^Наверх

анатомическая и функциональная организация нервной системы









info@ сайт

2 ФУНКЦИОНАЛЬНАЯ АНАТОМИЯ НЕРВНОЙ СИСТЕМЫ

Нервная система — это интегративный аппарат, восприни­мающий и анализирующий стимулы внешней и внутренней среды, формирующий и реализующий ответную реакцию организма. Нервная система обеспечивает взаимодействие организма с окружающей средой, адаптацию к изменяющимся условиям существования и согласованную деятельность всех органов. Функционирование нервной системы в высокой степени оперативное и адресное. Без большого преувеличения нервную систему можно считать венцом эволюции. Нервная система изначально формировалась как интегра­тивная система. У простейших одноклеточных организмов (амеба) нервной системы нет, связь с окружающей средой опосредуется гуморальной (донервной) формой регуляции (от лат. Ьитог — жидкость). С появлением из эктодермы нервной системы возникает нервная форма регуляции. В филогенезе прослеживается несколько этапов развития нервной системы: I этап — сетевидная (риффузная) нервная система (гидра и др.); II этап —узловая нервная система (высшие черви): уже обнаруживаются не только нервные волокна (стволы, нервы), но и центры (нервные узлы); III этап — трубчатая нервная системы (хордовые). У ланцетника появляется нервная трубка с сегментарными нервами, т. е. формируется туловищный мозг. На самых ранних этапах формирования нервной системы была допущена «эволюционная ошибка: для восприятия сти­мулов внешней среды нервные клетки располагались формально правильно — на поверхности. Но такое местоположение клеток делает их легко уязвимыми, а способностью к делению и восстановлению нервные клетки не обладают. Поврежденные же отростки интактного тела клетки способны к восстановлению. Поэтому вся дальнейшая эволюционная стратегия по отношению к нервной системе заключалась в том, чтобы, оставив на поверхности органы восприятия возмущающих воздействий внешней среды (рецепторы и отростки), разместить нервные клетки как «особую ценность вне зон досягаемости поврежда­ющих факторов. Постепенно нервная система приобрела такие мощные биологические барьеры (позвоночник, череп), какими не обладают другие органы и системы. В развитии животного мира особая роль принадлежала аппарату движения, усложнение которого в значительной мере стимулировало совершенствование нервного аппарата. У низших многоклеточных способ передвижения носит перистальтический характер (гладкая мускулатура и местный нервный аппарат). На более высокой ступени развития возникает скелетная моторика (передвижение с помощью жестких рычагов), сопря­женная с образованием поперечнополостатой мускулатуры и центральной нервной системы, координирующей перемещения отдельных рычагов моторного скелета. Нервные узлы в сегментированном теле (червя) обеспечивали сегмен­тарные реакции. В интересах целого организма и для более адекватного реагирования на раздражители необходима была связь между отдельными сегментами, которую обеспечили соедийительные клетки (интернейроны), а отдельные узлы стали превращаться в сплошной тяж клеток эктодермального происхождения — медуллярную пластинку. Далее медуллярная пластинка прогибается в центре, образуя по бокам медуллярные валики; латеральные части пластинки приближаются друг к другу и соединяются — образуется медуллярная трубка с центральным каналом. Если медуллярная пластинка состоит из одного слоя клеток, то в медуллярной трубке обнаруживается несколько слоев: внутренний (эпендимный), средний (мантийный), наружный (краевая вуаль). В последующем из внутреннего слоя образуются клетки эпендимы (центрального канала спинного мозга и желудочков головного мозга), средний слой дифференцируется в нейробласты и нервные клетки, спонгиобласты и клетки глии — в астроциты и олигодендроциты (клетки микроглии, как оболочки и сосуды нервной системы, имеют мезодермальное происхождение). Наружный слой образует белое вещество (проводниковый аппарат). Кроме того, здоль медуллярной трубки с обеих сторон образуются сплошные клеточные тяжи — ганглиозные пластинки (медуллярные гребеш­ки), которые станут материалом для образования спинномозговых, черепных и вегетативных ганглиев. Беспорядочное движение живых организмов постепенно начинает сменяться ориентированным движением. На том конце, который при перемещении находится впереди, формируются органы восприятия внешних раздражений (органы чувств), что приводит к интенсивному развитию прилегающего участка туловищного мозга. В конечном итоге это привело к формированию головного мозга, обособлению передней части туловища и образованию головы (цефализация). Из задней части медуллярной трубки формируется спинной мозг. На 4-й неделе развития эмбриона человека можно наблюдать формирование трех отделов на головном конце медуллярной трубки — стадия трех первичных мозговых пузырей — заднего (ромбовидного), среднего и переднего. Позже возникает стадия пяти мозговых пузырей: задний (ромбовидный) мозг подразделяется на задний мозг (те(епсер. Ьа 1оп) и замозжье (гше 1епсер. Ьа 1оп), а передний — на конечный мозг (1е 1епсер. Ьа 1оп) и промежуточный (с. Иепсер. Ьа 1оп). Преобладающее развитие боковых отделов непарного переднего пузыря приводит к возникновению двух пузырей конечного мозга. В дальнейшем из замозжья образуется продолговатый мозг, из заднего мозга — мост и мозжечок, из среднего мозга — ножки мозга, четверохолмие, из промежуточного мозга — таламус, метаталамус, эпиталамус, бледный шар, задняя часть гипоталамуса, из переднего мозга — полушария мозга (кора, белое вещество, базальные ганглии), обонятельный мозг, передняя часть гипоталамуса. Полость задней части медуллярной трубки трансформируется в цент­ральный канал спинного мозга; в заднем мозге образуется IV желудочек, в среднем — водопровод мозга, в промежуточном — III желудочек, в конечном мозге — боковые желудочки. В эволюции головного мозга прослеживается определенная функцио­нальная этапность: вначале были востребованы механизмы статики и акустики для ориентировки в водной среде, поэтому прежде всего развивается задний мозг (VIII пара черепных нервов, мозжечок; у человека эти структуры в значительной мере сохранили прежнюю локализацию). Естественно, что центры дыхания, кровообращения, пищеварения сразу же стали формиро­ваться в наиболее развитом отделе нервной системы — заднем мозге. Локализация этих центров также в значительной мере осталась прежней. С увеличением значения зрительного анализатора (начиная с рыб) начинает усиленно развиваться средний мозг. Наконец, при переходе из водной в воздушную среду был востребован обонятельный анализатор, что привело к развитию переднего мозга. Усложнение форм жизнедеятельности требовало создания механизмов регуляции новых функций, объединенного гармоничного функционирования разных отделов головного мозга. Происходит миграция нервных клеток из глубинных отделов на поверхность, и формируется кора больших полушарий и мозжечка. У человека кора больших полушарий приобретает шестислойное строение. Если попытаться построить эволюционный ряд (головной мозг различных животных и человека), то легко обнаруживается: 1) увеличение массы мозга; 2) увеличение количества извилин; 3) преобладающее развитие новой коры; 4) изменение соотношения «клетки : волокна* в пользу последних; 5) неравномерное развитие отдельных долей и участков мозга; 6) диффе­ренцированное развитие отдельных слоев коры. По топографическому принципу нервную систему условно разделяют на центральную (головной и спинной мозг) и периферическую (нервные структуры вне головного и спинного мозга). Периферическая нервная система связывает головной и спинной мозг с рецепторами и эффекторами, а центральная нервная система воспринимает информацию, анализирует и фор­мирует ответную реакцию, а также хранит информацию и опе­ративно ее воспроизводит. Функционирование центральной нервной системы определяется не только периферическими стимулами. Она обладает «способностью предвидения, строит программы целенаправленного поведения и «модель потребного будущего. Структурной единицей нервной системы является нервная клетка — нейрон (нейроцит). В нейроне выделяют тело и отростки — дендриты и аксон (нейрит). ОДейтерс в 1865 г. предложил выделять осевоцилиндрический и протоплазматические отростки. Термины «аксон*, «нейрит*, «дендриты* ввели в научную литературу соответственно Р.Келликер, А.Раубер, В.Хис. Тело —это нейроплазма, отграниченная оболочкой (цито­леммой). Последняя способна проводить нервный импульс и содержит белковые структуры для хеморецепторной функции. Она обеспечивает не только барьерную функцию (преграда для поступления чужеродных веществ), но и транспортную (поступление необходимых и выход неутилизированных ве­ществ) и информационную (обмен информацией между клеткой и внеклеточной средой). В нейроплазме располагается ядро (в вегетативных клетках их может быть 2—3), которое, в свою очередь, содержит ядрышко. Ядро окружено наружным и внутренним листками ядерной мембраны, содержащей многочисленные (до 10% поверхности оболочки) ядерные поры, обеспечивающие связь нуклеоплазмы с нейроплазмой. В кариоплазме располагаются глыбки хроматина. Ядро является носителем генетической информации, определяющей как основные свойства нейрона, так и регуляцию синтеза белков. Цитоплазма нейрона содержит многочисленные органеллы: нейрофиламенты, нейротрубочки, базофильное вещество, ми­тохондрии, эндоплазматическую сеть, лизосомы, пластинчатый комплекс, синаптические пузырьки. Нейрофиламенты (сеть тонких белковых нитей) выполняют опорную функцию, а нейротрубочки обеспечивают транспор­тировку веществ в нейроне. Базофильное вещество — тонкий индикатор функциональ­ного состояния нервной клетки и относится к лабильным компонентам нервной клетки. В покоящейся клетке (во время отдыха, сна и т. д.) базофильное вещество накапливается, глыбки становятся крупными, нарастает интенсивность базо- филии (гиперхроматоз). Активное функционирование клетки приводит к распылению и исчезновению базофильного веще­ства (хроматолиз). Вещество содержится как в теле клетки, так и в дендритах, но не обнаруживается в аксонах. Электронная микроскопия позволяет идентифицировать базофильное веще­ство как скопление цистерн гранулярного эндоплазматического ретикулума с большим количеством рибосом. Рибосомы гранулярного (зернистого) эндоплазматического ретикулума (цитоплазматической сети) непрерывно синтези­руют белки: транспортные РНК доставляют аминокислоты, а матричная РНК, содержащая код, определяет последователь­ность объединения строго определенных аминокислот. Белки поступают в отростки клетки (для возмещения израсходован­ных). Зернистая цитоплазматическая сеть принимает участие в транспортировке белков, в частности в пластинчатый комплекс, транспортными пузырьками (отпочковываются от сети), а также в начальной обработке белков. Митохондрии — центры ферментной активности, энергооб­разующие внутриклеточные структуры. Они обеспечивают окислительное фосфорилирование (аэробный путь расщепления сахара — клеточное дыхание) и синтез АТФ (источник энергии в живом организме). Митохондрии располагаются в нейро­плазме (в ядре их нет), имеют наружную и внутреннюю мембраны. Последняя образует многочисленные кристы. Пластинчатый комплекс — особая форма эндоплазматиче­ского (агранулярного) ретикулума — это система уплощенных цистерн. Белки, синтезированные в рибосомах, доставляются транспортными пузырьками и в мешочках пластинчатого комплекса «дозревают, формируются белковые секреты, кото­рые отпочковываются от «зрелых мешочков в виде секреторных гранул (пузырьков) и выделяются во внеклеточную среду. Пластинчатый комплекс выделяет вещества, подлежащие выведению из клетки лизосомами и фагосомами. Пластинчатый комплекс раньше называли комплексом Гольджи. Анатом по призванию, Камилло Гольджи в связи с финансовыми затруднениями был вынужден занять место главного врача и хирурга в больнице для неизлечимых больных. Однако стремление к морфологическим исследованиям было столь велико, что он организовал на кухне в своей квартире маленькую гистологическую лабораторию, оборудованную лишь микроскопом. Работая по ночам на кухне, он и сделал открытие, ставшее революционным для изучения нервной системы (окраска по Гольджи для выявления нервных клеток, нервных окончаний, внутреннего сетчатого комплекса). Лизосома—это «пищеварительная вакуоль, содержащая около 60 гидролитических ферментов (гидролаз), обеспечива­ющих лизис фагоцитируемого материала (продукты метабо­лизма, изношенные органеллы, инородные частицы). В случае гибели клетки запускается механизм аутолиза: вышедшие гидролазы лизосомы лизируют структуры клетки. Синаптические пузырьки располагаются в цитоплазме концевого аппарата аксона, хотя могут находиться и в теле нейрона. Они содержат медиатор, обеспечивающий передачу нервного импульса с нейрона на нейрон (рабочий орган). Кроме того, клетки могут содержать осмиофильные тельца (липидные включения), пигменты (липофусцин, меланин). Окончательная роль пигментов не установлена. Определенно можно говорить о том, что уменьшение числа клеток, содержащих пигмент, в черной субстанции сопряжено со снижением содержания дофамина (в черной субстанции, хвостатом ядре) и развитием синдрома паркинсонизма. Нейроны отличаются друг от друга по форме (пирамидные, корзинчатые, звездчатые и др.), размерам, числу отростков, функциональному предназначению. По количеству отростков различают униполярные (одноотростчатые), псевдоуниполяр- ные, биполярные, мультиполярные. Униполярные клетки встречаются у человека в период эмбрионального развития и в мезэнцефалическом ядре тройничного нерва. Псевдоуниполяр- ные (периферический и центральный отростки возле тела клетки объеди­няются) клетки образуют спинномозговые узлы и ганглии чувствительных черепных нервов. Биполярные нервные клетки являются клетками специ­альной чувствительности (зрительной, слуховой, вестибулярной, обонятель­ной). Мультиполярные нейроны — двигательные и ассоциативные. Многоотростчатость считается характерным признаком нервных клеток. Отростки нервных клеток—это выросты цитоплазмы. Дендриты (от греч. дегдроу — дерево) уже вблизи тела клетки древовидно ветвятся, содержат большое количество шипиков (мест потенциального образования синапсов). Они многократно увеличивают воспринимающую поверхность ней­рона. Следовательно, дендриты определяют рецептивное поле клетки (некоторые клетки могут иметь до 1000—1500 дендритов, обычно —5—15). Дендриты проводят импульс по направлению к нервной клетке. Кроме дендритов, нервная клетка имеет аксон (греч. а^оу — ось), или нейрит. Аксон менее ветвистый и часто более длинный. Он проводит импульс от тела клетки. Однонаправ­ленное движение нервного импульса определяет закон дина­мической поляризации нейрона. В последнее время этот закон подвергается ревизии. Предполагается, что по нервным волокнам импульсы способны распространяться в обоих направлениях, а одностороннее проведение характерно только для синапсов. Но и последнее утверждение требует уточнения: динамическая поляризация синапса свойственна только синапсам с химической передачей импульса, а на электрические синапсы (эфапсы) этот закон не распространяется, и передача нервных импульсов обеспе­чивается в обоих направлениях. По функциональному предназначению наиболее распро­страненными нейронами являются: 1) чувствительные (рецеп­торные, афферентные, центростремительные); 2) эффекторные (эфферентные, моторные или секреторные, центробежные); 3) вставочные (ассоциативные, замыкательные). Предполага­ется, что подавляющее большинство нейронов ЦНС (до — ассоциативные. Широко утвердилось мнение, что нейроны не делятся, а вскоре после рождения прекращается образование новых нейронов из клеток-предшест­венников, и они способны только отмирать. Периодически появляются сообщения о том, что определенные нервные клетки способны к делению и что это можно считать установленным (нервные клетки мозга птиц и млекопитающих). Последние публикации касаются возможности активного деления на протяжении всей жизни клеток гиппокампа человека. У нескольких пациентов с болезнью Паркинсона изъяты способные к делению нервные клетки, размножены ш уйго и предполагается их имплантация в пораженные отделы. Ближайшее будущее покажет, насколько эти факты соответствуют действительности и какова перспективность имплантации. Вызывает недо­умение следующее обстоятельство: у больных паркинсонизмом брали способные к делению (следовательно, к самообновлению) клетки гиппокампа, который в значительной мере определяет состояние такой функции, как память; между тем у самих больных паркинсонизмом достаточно закономерно постепенно формируется синдром паркинсонической (подкорковой) демен­ции. Нервные волокна—это отростки нервных клеток (аксоны и дендриты), покрытые снаружи глиальной оболочкой. Цент­рально расположенный осевой цилиндр — это вырост нейро­плазмы с органеллами, покрытый аксолеммой. Дендриты содержат тот же набор органелл, что и тело нервной клетки. Цитоплазма аксона (аксоплазма) содержит митохондрии, аксоплазматические пузырьки (гладкий эндоплазматический ретикулум), нейрофиламенты, нейротрубочки, но лишена гранулярного эндоплазматического ретикулума, пластинчатого комплекса и в значительной мере рибосом. Иначе говоря, аксоны лишены белков и должны восполнять их дефицит из тела нейрона. Их доставка осуществляется аксоплазматическим транспортом. Выделяют три типа аксон­ного транспорта: антероградный медленный (1—2 мм/сут), антероградный быстрый (200—400 мм/сут и более), ретро­градный. Первый поток перемещает лизосомы, ферменты для синтеза нейромедиаторов в окончаниях аксона (любопытно: скорость регенерации нерва соответствует скорости медленного аксонного транспорта). Второй поток транспортирует вещества, обеспечивающие синаптическую функцию (ферменты, фосфо­липиды, гликопротеиды и др.). Ретроградный аксонный транспорт обеспечивает возврат цитоплазматических компо­нентов (избыточных, отработанных, несущих информацию о состоянии концевых приборов). Существует и дендритный транспорт: ацетилхолинэстераза транспортируется от тела клетки к окончаниям дендритов по мере освобождения в синапсах ацетилхолина. Удивительную приспособляемость демонстрируют вирусы, использующие интраневральный (ретроградный) транспорт для проникновения в ганглии и ЦНС. Вполне вероятно, что для миграции вирусных частиц из ганглиев (вирусы герпеса) к коже используются антероградные потоки. Глиальная оболочка многих волокон содержит миелин, поэтому выделяют два вида нервных волокон: миелиновые (мякотные) и безмиелиновые (безмякотные). Среди первых различают толстые, средние и тонкие миелиновые волокна. Безмякотные (филогенетически древние) волокна являются волокнами вегетативной нервной системы. Миелинизация нервных структур — важнейший морфофункциональный и эволюционно закрепленный процесс. Миелинизация нервных волокон начинается на 4—5-м месяце внутриутробного развития и протекает строго упорядоченно: в первую очередь миелинизируются филогенетически старые структуры, позднее всего завершается миелинизация филогенетически наиболее молодых отделов. Установлено, что боковые и задние канатики спинного мозга, вестибулярные ядра, нижние оливы, червь мозжечка, таламус, гиппокамп в основном завершают миелинизацию в период эмбриогенеза; пирамидная система—в течение первого года жизни; в средней и нижней лобных извилинах, нижней теменной дольке, височных извилинах этот процесс начинается только после рождения. Области, причастные к эмоционально-психическим функциям, завершают миелинизацию лишь к 12—13 годам. Завершение процесса миелинизации нервных волокон свидетельствует о функциональной зрелости нервных структур. Строго регламентированное и последовательное созревание разных отделов и структур нервной системы и их включение в работу, вероятно, определяются программой жизнеобеспечения и сохранения организма как единого целого. Предполагается, что эта программа реализуется биохими­ческими (молекулярными) механизмами. В последние десятилетия усиленно изучают вещества, способные активно влиять на рост и созревание нервной ткани (фактор роста нервов, нейропептиды). Процесс миелинизации начинается вблизи тел нейронов и продвигается вдоль аксона (дендриты лишены миелиновой оболочки) в белое вещество (начальный участок аксона в сером веществе обычно лишен миелина). Миелин (белково-липидные соединения: холестерин, фосфолипиды, цереб- розиды, белковые вещества и др.) образуется олигодендроцитами в ЦНС и леммоцитами в ПНС. В процессе развития глиальная оболочка послойно (спирально) наматывается вокруг осевого цилиндра с аксолеммой. В обра­зовавшейся слоистой структуре во внутренних слоях представлен преиму­щественно миелин, а в наружных — цитоплазма и ядро клеток. Миелин ЦНС и ПНС обладает разными антигенными свойствами, что определяет характер клинических проявлений заболеваний инфекционно-ал- лергического генеза (лейкоэнцефалит, рассеянный склероз, острая воспали­тельная демиелинизирующая полирадикулоневропатия Гийена— Барре и т. д.). Через каждые 2—3 мм миелиновое волокно истончается, образуя перехваты (места соединения соседних глиоцитов), где миелиновый слой отсутствует. Именно миелин придает волокнам белый цвет (белое вещество головного и спинного мозга). Каков биологический смысл этого филогенетически отно­сительно позднего приобретения? Во-первых, миелиновая оболочка выполняет роль изолятора (предотвращает распро­странение нервных импульсов на соседние ткани). Во-вторых, она обеспечивает резкое возрастание скорости проведения нервного импульса: скорость прохождения импульса в безмя- котном волокне составляет 0,5—2 м/с, в тонком мякотном — 10—30 м/с, в среднем — 30—80 м/с, в толстом —80—120 м/с. Нервный импульс имеет электрическую природу и рас­пространяется по поверхности аксона и дендритов. Прохож­дение нервного импульса в немиелинизированном волокне — пробегающая волна деполяризации — реполяризации мембраны отростка. В покое внутренняя поверхность плазмолеммы заряжена отрицательно по отношению к наружной (в тканевой жидкости более высока концентрация ионов Ыа+, К+). Стимуляция какого-нибудь участка аксона вызывает деполя­ризацию мембраны: мембрана становится проницаемой для ионов Ыа + , и они устремляются в клетку, создается избыток положительно заряженных ионов в цитоплазме, она приобре­тает положительный заряд, а наружная поверхность — отрица­тельный. Возникшая разность потенциалов возбуждает соседний (дистальный) участок (и так последовательно до синапса), а в исходном участке «стремление к покою (к исходному состоянию) индуцирует процесс реполяризации: включается натриево-калиевый насос для переноса ионов через мембрану против градиента концентраций (осуществляет фермент, ис­пользующий для этого вещество, обеспечивающее энергию клетке,—АТФ). Восстанавливается исходное состояние, мемб­рана вновь избирательно проницаема. В миелинизированных волокнах аксолемма соприкасается с тканевой жидкостью только в перехватах (в остальных участках она отделена миелином). Следовательно, процесс деполяризации — реполяризации может происходит только в перехватах. Этот процесс индуцирует местные токи, которые проходят («перескакивают) до следующего перехвата. Такое прохождение тока называется сальтаторным. Поскольку элек­трический ток проходит значительно быстрее, чем ионный (непрерывная волна деполяризации), передача нервного им­пульса осуществляется значительно (в 50 раз) быстрее. Для клинициста не менее важное значение имеет другое обстоятельство. Образование новых (филогенетически более молодых) структур обычно бывает востребовано формирова­нием и выполнением новых функций (адаптация к изменя­ющимся условиям внешней среды), т. е. функциональная эволюция индуцирует морфологическую эволюцию. Филогене­тически молодые структуры с более сложными функциями «подчиняют себе древние образования. С другой стороны, филогенетический возраст определяет чувствительность к повреждающим факторам: наиболее ранимы и восприимчивы, наименее способны к восстановлению молодые структуры. При поражении последних соответственно утрачивается контроль за функциями более древних структур и возникают реликтовые реакции. С клинической манифестацией подобной соподчи- ненности мы встречаемся постоянно: гиперрефлексия, пато­логические рефлексы, гипертония мышц, патологические синкинезии при поражении центрального моторного нейрона, паллидарная гиперактивность (насильственные избыточные движения) при утрате стриарного контроля, гиперпатия при поражении задних канатиков. Главным образом этот принцип лежит в основе «воротной теории Мелзака. Многочисленные попытки анализа происхождения патоло­гических симптомов и синдромов, с позиций эволюционного развития нервной системы, породили целое направление в научной неврологии — биогенетическое. В значительной мере этим воззрениям мы обязаны сегодняшнему пониманию механизмов развития патологических рефлексов, контрактуры Вернике — Манна, таламического синдрома, формирования брюшных рефлексов, манифестации патологических рефлексов в младенческом возрасте и др. Кроме тела и отростков, в нейроне выделяют нервные окон­чания — концевые отделы (приборы) нервных волокон: меж- нейронные синапсы, эффекторы (нейротканевые синапсы), рецепторы. Нейроны в нервной системе, контактируя друг с другом, формируют нейронные цепи, обеспечивающие передачу нерв­ных импульсов. Межнейронные контакты осуществляются синапсами (от греч. сгоуаг/но — прикосновение, соединение, связь) — специализированными морфофункциональными обра­зованиями для передачи контактным способом нервного импульса с нейрона на нейрон. Среди межнейронных синапсов выделяют: аксоносоматические (аксон —тело клетки), аксоно­дендритические (аксон —дендрит), аксоно-аксональные (аксон — аксон), дендро-дендритические, дендросоматические, сомато- соматические. Нейрон может содержать до 10 000 синапсов, и, следовательно, один нейрон может устанавливать связи с 10 000(!) других нейронов. Механизм передачи импульса определяет другую система­тизацию синапсов: химические, электрические (эфапсы), смешанные. Электронная микроскопия позволяет выявлять составные части синапса: пресинаптическая и постсинаптическая части, между ними — синаптическая щель. Пресинаптическая часть (терминальный аппарат аксона) отделяется от синаптической щели пресинаптической мемб­раной и содержит митохондрии и синаптические пузырьки, наполненные медиатором (ацетилхолин, норадреналин, дофа­мин и др. всего более 30). Один и тот же нейрон способен синтезировать 3—5 разных медиаторов. При поступлении импульса в пресинаптическую часть медиатор освобождается из пузырька и выбрасывается в синаптическую щель, проходит ее и связывается хеморецептором постсинаптической мембраны (а-, /?-адренорецепторы, м-, н-холинорецепторы и др.). Про­реагировавший с рецептором медиатор инактивируется веще­ствами этого рецептора (ацетилхолин — ацетилхолинэстеразой, норадреналин — моноаминоксидазой и др.), обратно всасыва­ется через пресинаптическую мембрану (пиноцитоз) и вос­станавливается. Химические синапсы характеризует избирательная чувст­вительность хеморецепторов и односторонность проведения импульса. Электрические синапсы не содержат синаптических пузырьков, не имеют специфических хеморецепторов, передают импульсы в обоих направлениях. По функциональному предназначению синапсы делят на возбуждающие (аксонодендритические) и тормозные (аксоно­аксональные); химические синапсы обеспечивают проведение импульсов любого назначения, электрические — только возбуж­дающих. Нейротканевые синапсы (эффекторы) передают соматические (вегетативные) импульсы на рабочий орган. Различают нервно- мышечные и нервно-секреторные синапсы. В скелетной (попереч­нополосатой) мускулатуре они представлены моторными бляшками: миелиновое волокно вблизи бляшки теряет миелин, распадается на терминальные веточки, которые через синаптическую щель контактируют с сарколеммой мышечного волокна. Медиатором обычно является ацетилхолин. Функциональное предназначение мышцы определяет характер иннервации: в мышцах, ответственных за тонкие дифференцированные движения (наружные мышцы глаза), каждое мышечное волокно иннервируется индивидуальным аксоном (ветвью аксона); в мышцах с менее дифференцирован­ными движениями один двигательный аксон может иннервировать сотни и даже тысячи мышечных волокон. Рецепторы — нервные окончания периферических рецепторных нейронов. Рецепторы отличаются значительным полиморфизмом по структуре и функциональному предназначению; они обеспечи­вают восприятие сигналов (специфических раздражений) среды и трансформацию энергии раздражения в нервный импульс. Если возможность образования новых нервных клеток на поздних этапах онтогенеза продолжает оставаться предметом дискуссий, то возможность образования и деструкции новых отростков и синапсов у взрослого человека признается реальной. Эти представления лежат в основе учения о пластичности мозга, возможности обучения, адаптации, компенсации нару­шенных (утраченных) функций и являются стимулом для создания лекарственных препаратов, способных активировать синаптогенез и аксональный транспорт. Однако существует и оборотная сторона медали: избыточный рост веточек аксона и образование новых синапсов могут быть сопряжены с фор­мированием патологических систем, что приводит к патоло­гическими реакциям нервной системы. Нейроны характеризует высокая интенсивность обмена веществ, поэтому они утилизируют значительную и несоиз­меримую с их массой часть кислорода, глюкозы и других веществ из крови (до 20% кислорода и 45% глюкозы при массе мозга, составляющей около 2% от массы тела). Это делает их высокочувствительными к гипоксии, гипогликемии, накоплению продуктов метаболизма, что приводит к деструк­тивным изменениям нейронов. Кроме нейроцитов, нервная система содержит огромное количество глиоцитов (в головном мозге насчитывают до 15 млрд нейронов и 150 млрд глиоцитов). Термин «нейроглия предложил Р.Вирхов в 1846 г. Выделяют несколько видов клеток нейроглии: 1) астроциты (от греч. асгсроу — звезда); 2) олигодендроглиоциты (от греч. окьуоа— малочисленный, малый, дегдроу — дерево); 3) эпенди- моциты; 4) микроглия (микроглиоциты). Первые три вида клеток дифференцируются из общих клеток-предшественников эктодер­мального происхождения (медуллобласгы — спонгиобласты), глио- циты имеют мезодермальное происхождение. Нейроглия способна (медленно, видимо, не в полной мере совершенно) обновляться в течение всей жизни. Располагаются глиоциты как в сером, так и в белом веществе головного и спинного мозга, а также в спинномозговых ганглиях и периферических нервах (леммоциты). В тканях организма функционирующие клетки поддержива­ются соединительнотканными элементами. В паренхиме мозга такие клетки практически отсутствуют. Поэтому длительно господствовала гипотеза, что главная функция глиоцитов— опорная (от греч. ука — клей). Сегодня эти представления в значительной мере пересмотрены. Растет убеждение, что без выполнения глиоцитами специфических функций нормальное функциониро­вание нейронов было бы невозможно. Нейроглия принимает активное участие в метаболизме в нейронах, утилизации отработанных (вредных) веществ, синтезе белка и нуклеиновых кислот, обеспечивает (вместе с лимфоцитами спинномозговой жидкости) интратекальный иммунитет. Астроциты участвуют вместе с эндотелиоцитами, базальной мембраной капилляров и поверхностными мембранами нейронов в образовании гемато- энцефалического барьера. Отростки астроцитов расширяются и распластываются на поверхности капилляра или нейрона, т. е. астроцитарные ножки служат как бы оберткой для капилляров. При всей несомненной пользе гематоэнцефалического барьера (предупреждение поступления в нервную систему инородных частиц, бактерий, вирусов и др.) он имеет и некоторые отрицательные свойства: для создания должной концентрации лекарственных веществ (антибиотиков) в спин­номозговой жидкости дозы препаратов приходится многократно увеличивать при внутримышечном введении. Астроциты также выполняют репаративную, фагоцитарную, трофическую, барьерную функции. Олигодендроглиоциты (в периферической нервной системе — леммоциты) вырабатывают миелин. Деструкция миелина приводит к развитию тяжелых клинических синдромов. Клетки эпендимы выполняют опорную, пролиферативную, трофиче­скую и барьерную функции, участвуют в образовании сосудистых сплетений желудочков головного мозга. Микро­глиоциты происходят из моноцитов крови, подвижны, выпол­няют фагоцитарные функции (клетки-уборщики), что роднит их с макрофагами. Однако строение их многоотростчатое и обнаруживаются они только в нервной системе, что и позволяет рассматривать их как глиоциты. Предполагается, что в микроглиоциты могут превращаться и перициты, окружающие стенки капилляров мозга. Различные патологические процессы в нервной системе сопровождаются в разной степени выраженными неспецифиче­скими изменениями (специфические изменения встречаются очень редко) ядра, цитоплазмы, базофильного вещества, отрост­ков. В классической нейроморфологии принято было выделять такие формы изменения нервных клеток: первичное раздражение, острое набухание, гидропические изменения, сморщивание, тяжелые и ишемические изменения, пигментные и жировые дегенерации и др. Электронная микроскопия позволяет уточнять и детализировать характер и преимущественную локализацию патологических изменений — ядро, органеллы нейроплазмы, обо­лочки, инородные частицы (вирусы) и др. Сегодня рассматривают два основных типа гибели клеток: токсический (некротический) и апоптоз. В первом случае в поврежденных клетках регистрируются набухание, разрыв мембраны, высвобождение клеточного содержимого, воспалительная реакция в окружающей ткани. Апоптоз сопровождается уменьшением объема клетки, конден­сацией хроматина ядра, компактизацией цитоплазматических органелл; клетки быстро подвергаются фагоцитозу, не успевая разрушиться и вызвать воспалительный ответ. Апоптоз (программированная клеточная гибель) рассмат­ривается как физиологический ответ клетки на изменившиеся условия существования, который может быть инициирован как эндогенными причинами (специфическими физиологиче­скими сигналами), так и внешними повреждающими воздей­ствиями, и контролируется определенной группой генов. В течение всей жизни идет отбор (селекция) наиболее жизнеспособных и функционально полноценных нервных клеток. Предполагается, что около половины нейронов погибают непосредственно после их формирования; многие клетки в ходе нормального развития погибают позже. С телом нейронов коры больших полушарий связано становление и такого специфического явления, как гиперреак­тивность нейронов, обладающих особыми патофизиологическими свойствами врожденного или приобретенного характера, которая может проявляться эпилептическим припадком. Эпилептические нейроны изменены и функционально, и структурно. Эпилепсия относится к числу заболеваний, широко распространенных во всем мире (в общей популяции около 1% жителей планеты страдают этим недугом — свыше 30 млн человек). Постепенно формируется раздел клинической неврологии, связанный с избирательным поражением глиоцитов. Именно глиоциты (астроциты, олигодендроглиоциты) являются ми­шенью для вируса иммунодефицита человека (ВИЧ) в нервной системе, что объясняется наличием на мембране глиоцитов специфических рецепторов СБ 4 (нейроны таких рецепторов не имеют). ВИЧ обладает столь высокой степенью нейро- тропности, что поражение нервной системы (СПИД-дементный синдром) может опережать клинические проявления главного клинического синдрома, определившего название болезни — синдром приобретенного иммунодефицита (СПИД). Другая драматическая ситуация: глиоциты могут приобре­тать свойства неограниченной пролиферации (безудержного хаотического деления) с развитием опухолей (глиом) с разной степенью злокачественности. Сегодня рассматривают такую гипотезу: в организме деление и дифференцировка клеток уравновешиваются апоптозом. Нару­шение этого равновесия в любом направлении чревато для организма неблагоприятными последствиями. При ослаблении механизмов апоптоза (усилении механизмов деления клеток) развиваются опухоли, аутоиммунные болезни. Если же у клеток повышается восприимчивость к индукции апоптоза, то допуска­ется возможность запуска нейродегенеративного процесса (бо­лезнь Альцгеймера и Паркинсона, боковой амиотрофический склероз, спинальная мышечная дистрофия и др.). Поражение нервных волокон также многообразно: миели- нопатии, аксонопатии, валлеровское перерождение (перерожде­ние отделенных от клетки нервных волокон) и др. Активно изучается раздел, связанный с поражением синапсов (синаптические болезни). Поскольку часто регист­рируются не только и не столько деструкция синапсов, сколько нарушения медиации, эти заболевания классифицируются как медиаторные. Причины блокады передачи импульса через синаптическую щель различны: дефицит образования и поступления в синаптическую щель медиатора, быстрая инактивация медиатора, снижение чувствительности рецепторов постсинаптической мембраны и др. К таким заболеваниям относятся столбняк (столбнячный токсин ингибирует секрецию тормозных аминокислот), боту­лизм (ботулотоксин блокирует освобождение ацетилхолина из нервных окончаний), отравления фосфорорганическими со­единениями (снижают активность ацетилхолинэстеразы, в избыточных количествах накапливается ацетилхолин), миасте­ния (антитела к рецепторам ацетилхолина занимают его место на рецепторах, а ацетилхолин разрушается ацетилхолинэсте- разой), паркинсонизм (дефицит дофамина) и др. Изучение биологически активных веществ и их рецепторов представля­ется весьма перспективным для расшифровки патогенеза широкого круга заболеваний нервной системы.<< |








Анатомическая организация нервной системы

-1Нервная система подразделяется на две основные части: центральную и периферическую. Центральная нервная система состоит из нейронов, их отростков и глии, расположенных в головном и спинном мозгу.Периферическая нервная система, напротив, образована нейронами, отростками и глией, находящимися за пределами центральной нервной системы. К ней относятся все нервные отростки, идущие в составе периферических нервов (черепно-мозговых, спинномозговых и вегетативных), а также расположенные на периферии скопления нервных клеток - чувствительные и вегетативные ганглии.Анатомически центральная нервная система состоит из четырех отделов, образующихся у человека на третьей неделе внутриутробного развития. К ним относятся передний мозг (прозенцефалон), средний мозг (мезенцефалон), задний мозг (ромбенцефапон) и спинной мозг. На седьмой неделе эмбриогенеза происходит дальнейшее разделение переднего и заднего мозга, в результате чего образуются пять отделов, имеющихся и в зрелом мозгу: конечный мозг (теленцефалон), промежуточный мозг (диенцефалон), средний мозг (мезенцефалон), задний мозг (метенцефалон), и продолговатый мозг (миеленцефалон). Конечный мозг и промежуточный мозг являются производными переднего мозга, а задний мозг и продолговатый - ромбовидного (заднего). Внутри каждого из этих отделов находится пространство, заполненное жидкостью, или желудочек; всего таких желудочков четыре. Боковые (правый и левый) желудочки находятся внутри долей конечного мозга, третий желудочек локализуется в промежуточном мозге, а четвертый расположен между задним и продолговатым мозгом. Третий и четвертый желудочки сообщаются между собой посредством сильвиева водопровода, проходящего в виде каната в среднем мозгу.Темы: 








Строение и функциональная организация нервной системы.

? ПредыдущаяСтр 11 из 31Следующая ?

Вся нервная система делится на центральную и периферическую. К центральной нервной системе (ЦНС) относится головной и спинной мозг. От них по всему телу расходятся нервные волокна — периферическая нервная система (ПНС). Она соединяет мозг с органами чувств и с исполнительными органами — мышцами и железами.

Все живые организмы обладают способностью реагировать на физические и химические изменения в окружающей среде.

Стимулы внешней среды (свет, звук, запах, прикосновение и т.п.) преобразуются специальными чувствительными клетками (рецепторами) в нервные импульсы — серию электрических и химических изменений в нервном волокне. Нервные импульсы передаются по чувствительным (афферентным) нервным волокнам в спинной и головной мозг. Здесь вырабатываются соответствующие командные импульсы, которые передаются по моторным (эфферентным) нервным волокнам к исполнительным органам (мышцам, железам). Эти исполнительные органы называются эффекторами.

Основная функция нервной системы — интеграция внешнего воздействия с соответствующей приспособительной реакцией организма.

Структурной единицей нервной системы является нервная клетка — нейрон. Он состоит из тела клетки, ядра, разветвленных отростков — дендритов - по ним нервные импульсы идут к телу клетки - и одного длинного отростка — аксона — по нему нервный импульс проходит от тела клетки к другим клеткам или эффекторам.

Отростки двух соседних нейронов соединяются особым образованием — синапсом. Он играет существенную роль в фильтрации нервных импульсов: пропускает одни импульсы и задерживает другие. Нейроны связаны друг с другом и осуществляют объединенную деятельность.

ЦНС состоит из головного и спинного мозга.

Головной мозг подразделяется на ствол мозга и передний мозг. Ствол мозга состоит из продолговатого мозга и среднего мозга. Передний мозг подразделяется на промежуточный и конечный.

Все отделы мозга имеют свои функции.

Так, промежуточный мозг состоит из гипоталамуса — центра эмоций и витальных потребностей (голода, жажды), лимбической системы (ведающей эмоционально-импульсивным поведением) и таламуса (осуществляющего фильтрацию и первичную обработку чувственной информации).

У человека особенно развита кора больших полушарий — орган высших психических функций. Она имеет толщину 3—4 мм, а общая площадь ее в среднем равна 0,25 кв.м. Кора состоит из шести слоев. Клетки коры мозга связаны между собой. Их насчитывается около 15 миллиардов.

Различные нейроны коры имеют свою специфическую функцию. Одна группа нейронов выполняет функцию анализа (дробления, расчленения нервного импульса), другая группа осуществляет синтез, объединяет импульсы, идущие от различных органов чувств и отделов мозга (ассоциативные нейроны). Существует система нейронов, удерживающая следы от прежних воздействий и сличающая новые воздействия с имеющимися следами.

По особенностям микроскопического строения всю кору мозга делят на несколько десятков структурных единиц — полей, а по расположению его частей — на четыре доли: затылочную, височную, теменную и лобную.

Кора головного мозга человека является целостно работающим органом, хотя отдельные его части (области) функционально специализированы (затылочная область коры осуществляет сложные зрительные фун­кции, лобно-височная — речевые, височная — слуховые, лобная – двигательные).

Все отделы коры мозга взаимосвязаны; они соединены и с нижележащими отделами мозга, которые осуществляют важнейшие жизненные функции. Подкорковые образования, регулируя врожденную безусловно-рефлекторную деятельность, являются областью тех процессов, которые субъективно ощущаются в виде эмоций (они, по выражению И.П. Павлова, являются «источником силы для корковых клеток»).

В мозгу человека имеются все те структуры, которые возникали на различных этапах эволюции живых организмов. Это свидетельствует об общем происхождении человека и животных. По мере усложнения организации животных на различных ступенях эволюции значение коры головного мозга все более и более возрастает.

Основной механизм нервной деятельности рефлекс — реакция организма на внешнее или внутреннее воздействие при посредстве центральной нервной системы.

Термин «рефлекс» введен в физиологию французским ученым Рене Декартом в XVII веке. Для объяснения психической деятельности он был применен в 1863 году основоположником русской материалистической физиологии М.И. Сеченовым. Развивая учение И.М. Сеченова, И.П. Павлов экспериментально исследовал особенности функционирования рефлекса.

Все рефлексы делятся на две группы: условные и безусловные.

9.) Безусловные рефлексы — врожденные реакции организма на жизненно важные раздражители (пищу, опасность и т.п.). Они не требуют каких-либо условий для своей выработки (рефлекс мигания, выделение слюны при виде пищи).

Это природный запас готовых, стереотипных реакций организма. Они возникли в результате длительного эволюционного развития данного вида животных. Одинаковы у всех особей одного вида; это физиологический механизм инстинктов.

Условные рефлексы — физиологический механизм приспособления организма к изменяющимся условиям среды.

Условные рефлексы — это такие реакции организма, которые не являются врожденными, а вырабатываются в различных прижизненных условиях. Они возникают при условии постоянного предшествования различных явлений тем, которые жизненно важны для животного. Если же связь между этими явлениями исчезает, то условный рефлекс угасает (рычание тигра в зоопарке, не сопровождаясь его нападением, перестает пугать других животных).

Итак, деятельность мозга является отражением внешних воздействий как сигналов для тех или иных приспособительных действий.

Механизмом наследственного приспособления являются безусловные рефлексы, а механизмом идивидуально изменчивого приспособления являются условные рефлексы, сложные комплексы функциональных систем.

Принципы и законы высшей нервной деятельности (ВНД).

Деятельность коры головного мозга подчинена ряду принципов и законов. Основные из них впервые были установлены И.П. Павловым. В настоящее время некоторые положения павловского учения уточнены, развиты, а отдельные из них пересмотрены. Однако для овладения основами современной нейрофизиологии необходимо ознакомиться с фундаментальными положениями павловского учения.

Аналитико-синтетический принцип ВНД. Как установлено И.П. Павловым, это основной фундаментальный принцип работы коры больших полушарий головного мозга. Ориентация в окружающей среде связана с вычленением отдельных ее свойств, сторон, признаков (анализ) и объединением, связью этих признаков с тем, что является полезным или вредным для организма (синтез). Синтез, как отмечал И.П. Павлов, — это замыкание связей, а анализ — это все более тонкое отчленение одного раздражителя от другого.

Аналитико-синтетическая деятельность коры головного мозга осуществляется взаимодействием двух нервных процессов: возбуждения и торможения. Эти процессы подчинены следующим законам.

Закон иррадиации возбуждения. Очень сильные (так же, как и очень слабые) раздражители при длительном воздействии на организм вызывают иррадиацию — распространение возбуждения по значительной части коры больших полушарий.

Только оптимальные раздражители средней силы вызывают строго локализированные очаги возбуждения, что и является важнейшим условием успешной деятельности.

Закон концентрации возбуждения. Возбуждение, распространившееся из определенного пункта по другим зонам коры, с течением времени сосредоточивается в месте своего первичного возникновения. Этот закон лежит в основе главного условия нашей деятельности — внимания (сосредоточенности сознания на определенных объектах деятельности). При концентрации возбуждения в определенных участках коры мозга происходит его функциональное взаимодействие с торможением, это и обеспечивает нормальную аналитико-синтетическую деятельность.

Закон взаимной индукции нервных процессов. На периферии очага одного нервного процесса всегда возникает процесс с обратным знаком.

Если в одном участке коры сконцентрирован процесс возбуждения, то вокруг него индуктивно возникает процесс торможения. Чем интенсивнее сконцентрированное возбуждение, тем интенсивнее и шире распространен процесс торможения.

Наряду с одновременной индукцией существует по

10.) следовательная индукция нервных процессов — последовательная смена нервных процессов в одних и тех же участках мозга.

Только нормальное соотношение процессов возбуждения и торможения обеспечивает поведение, адекватное (соответствующее) окружающей среде. Нарушение баланса между этими процессами, преобладание одного из них вызывает значительные нарушения в психической регуляции проведения. Преобладание торможения, недостаточное взаимодействие его с возбуждением приводит к снижению активности организма (вплоть до сна наяву). Преобладание возбуждения может выразиться в беспорядочной хаотической деятельности, излишней суетливости, снижающей результативность деятельности. Процесс торможения — это активный нервный процесс. Он ограничивает и направляет в определенное русло процесс возбуждения, содействует сосредоточению, концентрации возбуждения.

Торможение бывает внешним и внутренним. Если на животное внезапно подействует какой-либо новый сильный раздражитель, то прежняя деятельность животного в данный момент затормозится. Это внешнее (безусловное) торможение. Возникновение очага возбуждения по закону отрицательной индукции вызывает торможение других участков коры.

Одним из видов внутреннего или условного торможения является угасание условного рефлекса, если он не подкрепляется безусловным раздражителем (угасательное торможение). Оно вызывает прекращение ранее выработанных реакций, если они в новых условиях становятся бесполезными.

Торможение возникает и при чрезмерном перевозбуждении мозга. Оно защищает нервные клетки от истощения. Этот вид торможения называется охранительным торможением.

На внутреннем виде торможения основана аналитическая деятельность коры мозга, способность различать близкие по своим свойствам предметы и явления. Например, при выработке у животного условного рефлекса на эллипс оно вначале реагирует и на эллипс и на круг. Происходит генерализация, первичное обобщение сходных раздражителей. Но, если постоянно сопровождать предъявление эллипса пищевым раздражителем и не подкреплять предъявление круга, то животное постепенно начинает отчленять (дифференцировать) эллипс от круга (реакция на круг затормаживается). Этот вид торможения, лежащий в основе анализа, дифференцирования, называется дифференцированным торможением. Оно уточняет действия животного, делает его более приспособленным к окружающей среде.

Системность в работе коры головного мозга (динами

10.) ческий стереотип). Опыты показывают, что если у собаки выработать ряд рефлексов на разные раздражители, которые повторяются в определенной последовательности, то со временем животное воспроизводит всю систему ответных реакций при воздействии лишь одного первоначального раздражителя. Это устойчивое закрепление определенной последовательности реакций называется динамическим стереотипом (от греч. «stereos» — твердый и «typos» — отпечаток).

Организм приспосабливается к стереотипно повторяющимся внешним воздействиям выработкой системы реакций. Динамический стереотип — физиологическая основа многих явлений психической деятельности человека (навыков, привычек, приобретенных потребностей и др.) Комплекс динамических стереотипов представляет собой физиологическую основу устойчивых особенностей поведения личности.

Динамический стереотип является выражением особого принципа работы мозга — системности - на сложные комплексные воздействия среды мозг реагирует не как на ряд отдельных изолированных раздражителей, а как на целостную систему. Внешний стереотип — закрепленная последовательность воздействий отражается во внутреннем нервно-динамическом стереотипе. Внешними стереотипами являются все целостные предметы и явле­ния (они всегда представляют определенную совокупность призна­ков): привычная обстановка, последовательность событий, уклада жизни и т.д.

Ломка привычного стереотипа всегда является тяжелым нервным напряжением (субъективно это выражается в тоске, унынии, нервозности, раздражительности и т.п.). Как ни сложна ломка старого стереотипа, новые условия формируют новый стереотип (поэтому он и назван динамическим). В результате многократного функционирования он все более и более закрепляется и в свою очередь становится все более трудноизменяемым.

Динамические стереотипы особенно устойчивы у пожилых людей и у лиц со слабым типом нервной деятельности, с пониженной подвижностью нервных процессов.

Привычная система действий, вызывая облегчение нервного труда, субъективно ощущается в виде положительных эмоций. «Процессы установки стереотипа, довершения установки, поддержки стереотипа и нарушений его и есть субъективно разнообразные положительные и отрицательные чувства».

Типологические особенности высшей нервной деятельности (ВНД).

В опытах с животными И.П. Павлов установил, что у некоторых животных положительные условные рефлексы образуются быстро, а тормозные медленно. У других животных, наоборот, положительные условные рефлексы вырабатываются медленно, а тормозные быстрее. У третьей группы животных и те и другие рефлексы вырабатываются легко и прочно закрепляются. Было установлено, что действие тех или иных раздражителей зависит не только от их качества, но и от типологических особенностей ВНД - имеется в виду динамика протекания нервных процессов (возбуждения и торможения) у отдельных индивидуумов. Она характеризуется следующими тремя типологическими свойствами:

1) силой нервных процессов — работоспособностью нервных клеток при возбуждении и торможении;

2) уравновешенностью нервных процессов — соотношением между силой процессов возбуждения и торможения, их сбалансированностью или преобладанием одного процесса над другим;

3) подвижностью нервных процессов — скоростью смены процессов возбуждения и торможения.

В зависимости от сочетания этих свойств выделяются 4 типа ВНД.

Первый тип характеризуется повышенной силой нервных процессов, их уравновешенностью и высокой подвижностью (живой тип).

Второй тип характеризуется повышенной силой нервных процессов, но они не уравновешены, возбудительный процесс преобладает над тормозным, процессы эти подвижны (безудержный тип).

Третий тип характеризуется повышенной силой нервных процессов, их уравновешенностью, но малой подвижностью (спокойный тип).

Четвертый тип характеризуется пониженной силой нервных процессов, пониженной их подвижностью (слабый тип).

Т. е. типом ВНД является определенное сочетание устойчивых свойств возбуждения и торможения, характерных для ВНД того или иного индивидуума.

Различные типы ВНД лежат в основе четырех темпераментов: сангвинического, холерического, флегматичес­кого, меланхолического.

Сила, уравновешенность и подвижность нервных процессов обеспечивают более быстрое и эффективное приспособление к обстановке. Если сила нервных процессов недостаточна, то организм страдает от сильных внешних воздействий и неадекватно реагирует на их действие (преувеличивается их значение, возникают срывы нервной деятельности, неврозы).

При недостаточной подвижности нервных процессов

11.) организм не может быстро приспособиться к измененным условиям, для него особенно болезненна ломка стереотипа; она нередко вызывает невротические состояния. Но, как показали исследования И.П. Павлова, сила и подвижность нервных процессов могут возрастать под влиянием тренировки, воспитания, соответствующих условий жизни. Природные конституционные особенности организма могут быть изменены — такой оптимистичный вывод сделал И.П. Павлов, исходя из научно-экспериментальных данных.

Особенности ВНД человека

Рассмотренные выше принципы и закономерности ВНД являются общими для животных и для человека. Однако ВНД человека существенно отличается от ВНД животных. У человека в процессе его общественно-трудовой деятельности возникает и достигает высокого уровня развития принципиально новая сигнальная система.

Первая сигнальная система действительности — это система наших непосредственных ощущений, восприятий, впечатлений от конкретных предметов и явлений окружающего мира. Слово (речь) — это вторая сигнальная система (сигнал сигналов). Она возникла и развивалась на основе первой сигнальной системы и имеет значение лишь в тесной взаимосвязи с ней.

Благодаря второй сигнальной системе (слову) у человека более быстро, чем у животных, образуются временные связи, ибо слово несет в себе общественно выработанное значение предмета. Временные нервные связи человека более устойчивы и сохраняются без подкрепления в течении многих лет.

Слово является средством познания окружающей действительности, обобщенного и опосредованного отражения существенных ее свойств. И.II. Павлов: со словом «вводится новый принцип нервной деятельности — отвлечение и вместе с тем обобщение бесчисленных сигналов — принцип, обусловливающий безграничную ориентировку в окружающем мире и создающий высшее приспособление человека — науку».

Действие слова в качестве условного раздражителя может иметь такую же силу, как непосредственный первосигнальный раздражитель. Под влиянием слова находятся не только психические, но и физиологические процессы (это лежит в основе внушения и самовнушения).

Вторая сигнальная система имеет две функции — коммуникативную (она обеспечивает общение между людьми) и функцию отражения объективных закономерностей. Слово не только дает наименование предмету, но и содержит в себе обобщение.

Ко второй сигнальной системе относится слово слышимое, видимое (написанное) и произносимое.

Существует 4 типа ВНД (см. выше). Но у людей име

11.) ются специфические типологические особенности, связанные со второй сигнальной системой. У всех людей вторая сигнальная система преобладает над первой. Степень этого преобладания неодинакова. Это дало И.П. Павлову основание разделить ВНД человека на три типа:

1) мыслительный: К мыслительному типу относятся лица со значительным преобладанием второй сигнальной системы над первой. У них более развито абстрактное мышление (математики, философы); непосредственное отражение действительности происходит у них в недостаточно ярких образах.

2) художественный: К художественному типу относятся люди с меньшим преобладанием второй сигнальной системы над первой. Им присущи живость, яркость конкретных образов (художники, писатели, артисты, конструкторы, изобретатели и др.).

3) средний (смешанный): тип людей занимает промежуточное положение между двумя первыми.

Чрезмерное преобладание второй сигнальной системы, граничащее с отрывом ее от первой сигнальной системы, является нежелательным качеством человека.

«Нужно помнить, — говорил И.П. Павлов, — что вторая сигнальная система имеет значение через первую сигнальную систему и в связи с последней, а если она отрывается от первой сигнальной системы, то вы оказываетесь пустословом, болтуном и не найдете себе места в жизни».

У людей с чрезмерным преобладанием первой сигнальной системы, как правило, менее развита склонность к абстрагированию, теоретизации.

Итак, выше были рассмотрены основные положения учения И.П. Павлова о ВНД. Многие из этих положений не утратили своей значимости и в наши дни. Однако некоторые из них были уточнены и развиты далее учениками и последователями великого физиолога.

Современные исследования ВНД характеризуются развитием интегрального подхода к изучению целостной работы мозга.











Транскрипт

1 И. В. Гайворонский, А. И. Гайворонский, Г. И. Ничипорук ФУНКЦИОНАЛЬНАЯ АНАТОМИЯ НЕРВНОЙ СИСТЕМЫ Учебное пособие 8-е издание, переработанное и дополненное Рекомендовано Учебно-методическим объединением по медицинскому и фармацевтическому образованию вузов России в качестве учебного пособия для студентов медицинских вузов Санкт-Петербург Спец. Лит 20162 УДК 611.8(075.8) Г 12 Рецензенты: М. М. Одинак доктор медицинских наук, профессор, член-корреспондент РАМН, академик Российской Военно-медицинской академии, заведующий кафедрой нервных болезней Военно-медицинской академии; Л. Л. Колеcников доктор медицинских наук, профессор, академик РАМН, заведующий кафедрой анатомии человека Московского государственного медико-стоматологического университета Гайворонский И. В. Гайворонский А. И. Ничипорук Г. И. Г 12 Функциональная анатомия нервной системы : учебное пособие для мед. вузов / И. В. Гайворонский, А. И. Гайворонский, Г. И. Ничипорук. 8-е изд. перераб. и доп. Санкт-Петербур : Спец. Лит, с. : ил. ISBN Пособие посвящено одному из важнейших разделов нормальной анатомии человека анатомии нервной системы. Материал изложен с функциональных позиций, с учетом Международной анатомической номенклатуры (2003 г.). В нем систематизированы и обобщены современные представления о макро-микроскопической анатомии нервной системы. Изложены закономерности строения нейрона, рефлекторной дуги, системы афферентных и эфферентных нервных волокон. Показано функциональное значение основных анатомических образований в каждом отделе нервной системы и представлены наиболее характерные клинические проявления при их поражениях. Рассмотрены современные представления о динамической локализации функций в коре полушарий большого мозга, подробно описаны основные проводящие пути центральной нервной системы, с морфофункциональных позиций раскрыты основные аспекты строения периферической нервной системы. Текст пособия богато иллюстрирован классическими и оригинальными рисунками. Пособие рассчитано на студентов медицинских вузов и студентов психологических факультетов университетов. Оно может быть использовано врачами невропатологами, нейрохирургами, психиатрами и психоаналитиками, оториноларингологами, офтальмологами и др. а также преподавателями специализированных клинических кафедр. Кроме того, к тексту дается приложение атлас фотографий натуральных макропрепаратов по анатомии центральной нервной системы. УДК 611.8(075.8) ISBN ООО «Издательство Спец. Лит, 20163 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ. 7 Общее понятие о нервной системе. 8 Роль нервной системы в организме. 8 Классификация нервной системы. 9 Нейроны Нервные волокна Нервные окончания Общее понятие о рефлекторной деятельности Филогенез нервной системы Онтогенез нервной системы СПИННОЙ МОЗГ Внешняя форма Внутреннее строение Сегментарный и проводниковый аппараты спинного мозга Состав канатиков спинного мозга и краткая характеристика содержащихся в них проводящих путей Оболочки и межоболочечные пространства спинного мозга ГОЛОВНОЙ МОЗГ Общие данные о головном мозге Продолговатый мозг Внешняя форма Внутреннее строение Мост Внешняя форма Внутреннее строение Мозжечок Внешняя форма Внутреннее строение Связи мозжечка со спинным и головным мозгом Проводящие пути мозжечка IV желудочек Средний мозг Внешняя форма Внутреннее строение Промежуточный мозг Таламический мозг Подталамическая область III желудочек Пути и центры промежуточного мозга Ретикулярная формация Сегментарный аппарат ствола головного мозга Конечный мозг 4 Кора полушарий большого мозга Рельеф верхнелатеральной поверхности полушарий Рельеф медиальной поверхности полушарий Рельеф нижней поверхности полушарий Строение коры полушарий большого мозга Динамическая локализация функций в коре полушарий большого мозга Белое вещество полушарий большого мозга Обонятельный мозг Базальные ядра Боковые желудочки Обзорная характеристика головного мозга Оболочки головного мозга Рентгеноанатомия центральной нервной системы ПРОВОДЯЩИЕ ПУТИ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ Общая характеристика проводящих путей центральной нервной системы Афферентные проводящие пути Пути общей чувствительности Пути специальной чувствительности Эфферентные проводящие пути Пирамидные тракты Экстрапирамидные тракты Ассоциативные проводящие пути Понятие об экстрапирамидной системе Понятие о лимбческой системе КРОВЕНОСНЫЕ СОСУДЫ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ Кровеносные сосуды спинного мозга Кровеносные сосуды твердой оболочки головного мозга Кровеносные сосуды головного мозга Отток венозной крови от головного мозга АНАТОМИЯ ПЕРИФЕРИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ Общие данные о периферической нервной системе Спинномозговые нервы Менингеальные ветви спинномозговых нервов Задние ветви спинномозговых нервов Передние ветви спинномозговых нервов Черепные нервы Обонятельные нервы Зрительный нерв Глазодвигательный нерв Блоковый нерв Тройничный нерв Отводящий нерв Лицевой нерв Преддверно-улитковый нерв 5 Языкоглоточный нерв Блуждающий нерв Добавочный нерв Подъязычный нерв Вегетативная нервная система Симпатическая часть вегетативной нервной системы Парасимпатическая часть вегетативной нервной системы Принципы вегетативной иннервации внутренних органов ПРИЛОЖЕНИЕ (фотографии натуральных анатомических препаратов)67 ВВЕДЕНИЕ 8 Общее понятие о нервной системе Нервная система это совокупность анатомически и функционально взаимосвязанных структур, обеспечивающих регуляцию и координацию деятельности организма как единого целого и взаимодействие его с окружающей внешней средой. Она играет роль аппарата, воспринимающего раздражения, анализирующего поступающую информацию и обеспечивающего ответную реакцию организма. Нервная система появилась в ходе эволюции как интегративная система, т. е. система, осуществляющая согласованность функций всех органов и адаптацию организма к условиям существования. В отличие от других интегративных систем (сердечно-сосудистая система обеспечивает гуморальную интеграцию, а эндокринная система гормональную интеграцию) нервная система выполняет свои функции очень быстро, прицельно и кратковременно. Так, от момента возникновения раздражения до его ощущения проходят сотые доли секунды. Реагирует на раздражение, как правило, конкретный орган или группа органов. После устранения действия раздражителя ответная реакция мгновенно прекращается. РОЛЬ НЕРВНОЙ СИСТЕМЫ В ОРГАНИЗМЕ Как уже указывалось, нервная система является основной интегративной системой организма, осуществляющей свои функции по принципу рефлекторной деятельности. 1. Основные этапы рефлекторной деятельности следующие: восприятие раздражений из внутренней и внешней среды; трансформация энергии раздражения в нервный импульс; проведение нервных импульсов до соответствующих нервных центров; анализ и обработка поступившей информации в нервном центре; проведение нервных импульсов от нервного центра до рабочего органа; обеспечение ответной реакции (сокращение мышц или выделение секрета железами). 2. Координация и интеграция деятельности различных органов и систем органов. 3. Адаптационно-трофическая функция, т. е. обеспечение приспособления организма к изменениям внешней среды. 4. Мыслительная деятельность и ответная рефлекторная реализация процессов мыслительной деятельности (выполнение точных конкретных движений и т. д.). 5. Память на текущие и давние события. 89 КЛАССИФИКАЦИЯ НЕРВНОЙ СИСТЕМЫ По топографо-анатомическому принципу различают центральную и периферическую нервную систему. Центральная нервная система включает в себя головной и спинной мозг. Периферическая нервная система объединяет все структуры, расположенные за пределами головного и спинного мозга. Структуры, связанные со спинным мозгом, составляют спинномозговой отдел периферической нервной системы. К нему относят: спинномозговые узлы, корешки спинномозговых нервов, спинномозговые нервы, сплетения и ветви спинномозговых нервов, нервные окончания. Спинномозговой отдел обеспечивает иннервацию туловища, конечностей, частично шеи и внутренних органов. Структуры, связанные с головным мозгом, составляют краниальный отдел периферической нервной системы. К нему относят: краниальные чувствительные узлы, черепные нервы, ветви черепных нервов и их окончания. Краниальный отдел обеспечивает иннервацию головы, частично шеи и внутренних органов. По функции нервную систему делят на соматическую (анимальную) и вегетативную (автономную). Соматическая нервная система отвечает за иннервацию тела (сомы) кожи, мышц, скелета. Вегетативная нервная система обеспечивает иннервацию внутренних органов, желез и сосудов. В свою очередь, она включает симпатический и парасимпатические отделы. Центральная нервная система состоит из миллиардов высокоспециализированных клеток нейроцитов и клеток глии, которые обеспечивают деятельность нервных клеток (поддерживают, защищают и выполняют трофическую роль). Нейроциты на основе общности выполняемых функций группируются в соответствующие центры спинного и головного мозга. К этим центрам от различных рецепторов органов чувств (кожи, мышц, внутренних органов, органа зрения, слуха и равновесия, вкуса и обоняния) постоянно поступает информация, порой противоречивая. Задача центральной нервной системы заключается в том, чтобы после получения информации произвести в течение долей секунды ее оценку и принять соответствующее решение. В осуществлении последнего неоценима способность головного мозга к хранению и воспроизведению в нужный момент ранее поступившей информации (память). Величайшим достижением эволюции нервной системы является мыслительная способность. Она осуществляется в результате анализа и синтеза нервных импульсов в высших центрах головного мозга и составляет высшую нервную деятельность человеческого организма. 910 Центральная нервная система обладает и собственной инициативой. Она активно влияет не только на сосуды, мышцы, железы, побуждая их к работе, но и на сенсорные органы, регулируя их функцию. Периферическая нервная система связывает спинной и головной мозг с рецепторами (чувствительными аппаратами органов) и с эффекторами (аппаратами, передающими нервные импульсы на рабочие органы). Рабочие органы отвечают на внешние и внутренние раздражения приспособительными реакциями организма, такими как сокращение мышц или выделение секретов железами. Соматическая нервная система иннервирует сому (греч. тело), т. е. кожу, мышцы, скелет, некоторые внутренние органы (язык, гортань, глотку и др.) и осуществляет связь организма как целостной системы с внешней средой. Она воспринимает раздражения из внешней среды, анализирует их и обеспечивает ответную реакцию на них управляет скелетной (поперечнополосатой) мускулатурой. Вегетативная нервная система иннервирует внутренние органы и кровеносные сосуды, управляет гладкой мускулатурой и работой желез. Она объединяет отдельные части организма в единую целостную систему и осуществляет адаптационно-трофическую функцию в организме. Прежде чем приступить к изучению морфологии спинного и головного мозга, целесообразно рассмотреть общие принципы строения нервной системы. Нейроны Структурной единицей нервной системы является нервная клетка нейрон, или нейроцит (рис. 1). В нейроне выделяют следующие основные части: тело, отростки и их окончания. Различают два вида отростков дендриты и аксон (нейрит). Тело нейрона представляет собой скопление цитоплазмы (нейроплазмы), в которой располагается крупное круглое ядро. В нервных клетках вегетативной нервной системы может встречаться по 2 3 ядра. Количество ядрышек в ядре также составляет от одного до трех. Увеличение числа ядрышек и их объема свидетельствует об усилении функциональной активности нейрона. Ядро является носителем генетической информации, определяющей свойства нейрона, и осуществляет регуляцию синтеза белков. В цитоплазме нейрона находятся органеллы общего значения (митохондрии, рибосомы, эндоплазматическая сеть, лизосомы, ком- 1011 плекс Гольджи и т. д.) и специализированные структуры (нейрофибриллы, хроматофильное вещество и синаптические пузырьки). Нейрофибриллы бывают двух видов нейрофиламенты и нейротрубочки. Нейрофиламенты в теле нейрона представляют собой сеть тонких белковых нитей диаметром 6 10 нанометров (нм). В отростках нити располагаются продольно. Они выполняют опорную функцию, придают клетке определенную форму. Нейротрубочки (нейротубулы) также образованы белковыми нитями, которые имеют спиральную ориентацию. Диаметр трубочек составляет нм, толщина стенки 10 нм. Нейротубулы осуществляют транспорт веществ в пределах нейрона. Хроматофильное вещество (тигроидное вещество базофильные глыбки, или вещество Ниссля) также представляет собой скопление белков рибонуклеопротеидов. Это вещество находится в цитоплазме тела клетки и дендритов, в аксонах оно не обнаруживается. Рис. 1. Схема строения нейрона: 1 тело нейрона; 2 ядро; 3 нейрофибриллярный аппарат; 4 секреторные гранулы; 5 аксон; 6 дендриты; 7 окончания других нервных клеток Синаптические пузырьки находятся преимущественно в цитоплазме концевого аппарата аксона, но могут располагаться и в теле нейроцита. Они содержат медиаторы (ацетилхолин, норадреналин, гамма-аминомасляную кислоту и т. д.), которые обеспечивают химическую передачу нервного импульса с одного нейрона на другой или с нейрона на рабочий орган. Поверхность нейроцита представлена оболочкой (цитолеммой), которая определяет границы клетки и обеспечивает ее обмен с окружающей средой. Кроме того, цитолемма содержит большое количество белковых структур, выполняющих хеморецепторную функцию. Оболочка нервных клеток отличается способностью проводить нервное возбуждение (нервный импульс). 1112 Различают два вида отростков нервных клеток дендриты и аксон (нейрит), которые являются выростами цитоплазмы. Дендриты проводят нервный импульс только по направлению к телу нервной клетки. Они начинают древовидно ветвиться уже вблизи тела клетки, постепенно истончаются и заканчиваются в окружающих тканях. Дендриты многократно увеличивают воспринимающую поверхность нервной клетки. Количество дендритов вариабельно: от одного до десяти. Редко встречаются нервные клетки, не имеющие дендритов. У таких клеток восприятие раздражений осуществляется телом клетки. Помимо дендритов нервная клетка всегда имеет только один аксон (нейрит). Этот отросток всегда более крупный, длинный и менее ветвистый. Редкие боковые ветви у него появляются лишь в самом конце. Имеется зависимость между величиной тела нервной клетки и длиной аксона. Чем больше величина тела клетки, тем длиннее и крупнее аксон. Аксон проводит нервный импульс только от тела нервной клетки. Следовательно, нервная клетка со своими отростками строго динамически поляризована: нервный импульс проходит по дендритам к телу и от тела по аксону. Нервные клетки могут отличаться друг от друга по форме и размерам тела, по количеству отростков, по функциональной значимости. По форме тела различают клетки: пирамидные, грушевидные, веретенообразные, многоугольные, овальные, звездчатые, круглые и др. По размерам тела выделяют 3 группы нейронов: мелкие (4 19 мкм); средние (20 59 мкм); крупные ( мкм). По количеству отростков различают следующие виды нейронов (рис. 2): одноотростчатые (униполярные), двухотростчатые (биполярные), ложноодноотростчатые (псевдоуниполярные) и многоотростчатые (мультиполярные). В составе нервной системы человека наиболее часто встречаются биполярные, псевдоуниполярные и мультиполярные нервные клетки. По функциональной значимости в составе рефлекторной дуги выделяют 3 группы нейронов: 1) рецепторные (чувствительные), имеющие чувствительные нервные окончания (рецепторы), которые способны воспринимать раздражения из внешней или внутренней среды; 2) эффекторные (эфферентные), имеющие на окончаниях аксона эффекторы, которые передают нервный импульс на рабочий орган; 3) ассоциативные (вставочные), являющиеся промежуточными в составе рефлекторной дуги и передающие информацию с чувствительного нейрона на эффекторные. В сложных рефлекторных дугах ассоциативных нейронов может быть несколько. 1213 Рис. 2. Основные типы нервных клеток: 1 униполярная нервная клетка; 2 биполярная нервная клетка; 3 псевдоуниполярная нервная клетка; 4 мультиполярная нервная клетка; Т тело; А аксон; Д дендрит; П периферический отросток; Ц центральный отросток Существует связь структуры и функции нервных клеток. Так, псевдоуниполярные нейроны являются рецепторными (общечувствительными). Они воспринимают такие раздражения, как боль, изменения температуры и прикосновение. Биполярные нервные клетки являются клетками специальной чувствительности. Они воспринимают световые, обонятельные, слуховые и вестибулярные раздражения. Мелкие мультиполярные нейроны ассоциативные; средние и крупные мультиполярные и пирамидные нейроны двигательные. Следует обратить внимание, что у рецепторных нейронов (биполярных и псевдоуниполярных) отростки называют не дендритом и аксоном, а соответственно периферическим и центральным. Эти названия связаны с положением отростков по отношению к центральной нервной системе и к телу нервной клетки. Периферический отросток направляется от тела клетки на периферию, а центральный к спинному или головному мозгу. Нервные волокна Нервные волокна это покрытые снаружи глиальной оболочкой отростки нервных клеток, осуществляющие проведение нервных импульсов. 1314 Отросток нервной клетки (аксон или дендрит), расположенный в центре нервного волокна, называют осевым цилиндром. Осевой цилиндр представляет собой вырост нейроплазмы тела нервной клетки с содержащимися в ней органеллами, покрытый оболочкой (аксолеммой). В зависимости от наличия или отсутствия в составе глиальной оболочки миелина различают два вида нервных волокон миелиновые и безмиелиновые. В миелиновых волокнах глиальная оболочка толще и составляет на поперечном разрезе от 1 / 2 до 2 / 3 диаметра всего нервного волокна. Содержащийся в миелиновых волокнах миелин придает им белый цвет. Миелиновые волокна по диаметру делят на 3 группы: толстые (13 20 мкм), средние (7 12 мкм) и тонкие (1 6 мкм). Через каждые 1 3 мм нервное волокно резко истончается, образуются узловые перехваты (перехваты Ранвье) шириной 1 мм. В области перехватов миелиновый слой отсутствует это место соединения соседних глиальных клеток (шванновских). В зависимости от диаметра волокна различается скорость проведения нервного импульса. В толстых миелиновых волокнах она составляет примерно м/с, в средних м/с, в тонких м/с. При этом скорость прохождения импульсов в определенной группе волокон не зависит от силы раздражения. В настоящее время установлено, что толстые миелиновые волокна являются преимущественно двигательными, средние по диаметру волокна проводят импульсы тактильной и температурной чувствительности, а тонкие болевой. Таким образом, по составу волокон можно дать функциональную характеристику нерва (двигательный, чувствительный, смешанный). Миелиновая оболочка предотвращает распространение идущих по волокну нервных импульсов на соседние ткани, т. е. она выполняет роль диэлектрика (изолятора). Миелинизация нервных волокон начинается на 4 5 месяце внутриутробного развития и имеет неодинаковую продолжительность в различных отделах нервной системы. В процессе развития глиальная оболочка (мезаксон шванновской клетки) послойно наматывается вокруг осевого цилиндра. Образуется плотная слоистая оболочка, содержащая во внутренних слоях преимущественно миелин (белково-липидные соединения), а в наружных цитоплазму и оболочки шванновских клеток (леммоцитов). Завершение процесса миелинизации нервных волокон свидетельствует о зрелости нервных структур. Так, нервные волокна полушарий большого мозга, ответственные за эмоционально-психические функции, миелинизируются только к годам. 1415 Безмиелиновые волокна имеют небольшой диаметр (1 4 мкм) и проводят нервные импульсы со скоростью 1 2 м/с. Причем, в отличие от миелиновых волокон, импульсы в них проводятся не скачкообразно, а непрерывно. Безмиелиновые нервные волокна являются эфферентными волокнами вегетативной нервной системы. Они обеспечивают иннервацию внутренних органов, желез и сосудов. В одном безмиелиновом волокне содержится не один осевой цилиндр, а несколько (до 20). Они окутаны в виде муфты оболочкой из леммоцитов (рис. 3). В зависимости от направления проведения нервного импульса по отношению к центральной нервной системе различают 2 группы волокон: центростремительные и центробежные. Центростремительные волокна направляются к спинному или головному мозгу и функционально являются афферентными (восходящими). Центробежные волокна идут от головного или спинного мозга к рабочим органам (мышца, сосуд, железа) и называются эфферентными (нисходящими). Нервные волокна, расположенные в пределах центральной нервной системы, составляют белое вещество спинного и головного мозга. Рис. 3. Схема строения нервного волокна: I соматической нервной системы; II вегетативной нервной системы; 1 поперечный разрез; 2 продольный разрез; А аксон; Л леммоцит; П перехват Ранвье 1516 Учебное издание Гайворонский Иван Васильевич Гайворонский Алексей Иванович Ничипорук Геннадий Иванович ФУНКЦИОНАЛЬНАЯ АНАТОМИЯ НЕРВНОЙ СИСТЕМЫ Учебное пособие 8-е издание, переработанное и дополненное Подписано в печать Формат / 16. Печать офсетная. Печ. л. 22. Тираж 2000 экз. Заказ Отпечатано в типографии «L-PRINT, , Санкт-Петербург, Лиговский пр. 201, лит А, пом. 3Н









2.1. Взаимодействие сенсорных, моторных и мотивационных систем в переработке информации

Представьте себе действия человека, решившего выпить стакан чаю. Он подогревает на газовой или электрической плите воду, насыпает в чайник заварку, заливает её кипятком, ждёт положенное для заваривания время, наполняет стакан, добавляет в него сахар – весь порядок этих простых действий определяет нервная система.Чтобы совершать нужные действия, необходима информация о расположении участвующих в них предметов, о их давлении на руки, о положении самих рук и тела в пространстве. Все эти сведения собирают специализированные только на приёме информации нервные клетки (нейроны). Полученную информацию они кодируют нервными импульсами и передают её другим нейронам для дальнейшей переработки. Объединение клеток, непосредственно получающих информацию, с нейронами, занятыми её последующей переработкой, образует сенсорную или чувствительную систему.Другие нейроны специализируются на создании команд для производства необходимых движений, удержания нужных предметов в руке, сохранения или изменения положения туловища, ног. Готовые команды в виде нервных импульсов поступают к определённым мышцам: каждое движение происходит благодаря сокращению одних и расслаблению других мышц, их совместную деятельность координируют специальные нервные клетки. Совокупность нейронов, готовящих команды для мышц, и нервных клеток, непосредственно управляющих мышцами, образует моторную или двигательную систему.Стоит задуматься и над обстоятельствами, побуждающими человека к тому или иному действию, например, к чаепитию. Была ли это жажда, вызванная предшествующей потерей жидкости, например, при обильном потении в бане, связано ли это поведение с желанием взбодрить себя или оно обусловлено приходом случайного гостя? Во всех случаях можно найти чем-то обусловленное побуждение к действию – мотивацию поведения. Любая же мотивация возникает как результат активности определённых структур мозга, которые можно объединить в мотивационную систему.Несомненно, что разные системы взаимодействуют друг с другом. Обычно сенсорные системы активируют мотивационную, а она, в свою очередь, побуждает моторную систему создавать необходимые команды. Одновременно происходят изменения активности вегетативной нервной системы, регулирующей деятельность внутренних органов, которая должна быть согласована с моторной деятельностью. Все системы сотрудничают при любых, даже самых простых видах деятельности.Сенсорные, моторные и мотивационные системы образованы большим количеством нейронов, объединённых друг с другом не случайно, а в строго определённом порядке, где каждый нейрон занимает своё место, как мелкая деталь в сложном механизме. Положение отдельных нейронов определяется генетическим кодом и в основном устанавливается ещё до рождения – во время внутриутробного развития. Функция нервной системы в целом заключается в восприятии информации, её переработке и передаче исполнительным органам, которыми могут быть мышцы (в том числе мышцы внутренних органов, сердечная мышца) и железы внешней секреции; особым способом нервная система взаимодействует с железами внутренней секреции – эндокринной системой. Конечной целью всей этой деятельности является обеспечение взаимодействия организма со средой, приспособление к постоянно меняющимся условиям существования (Рис. 2.1).

2.2. Общие принципы анатомической организации нервной системы

Человеческий мозг представляет собой самый совершенный инструмент познания Вселенной и одновременно остаётся наименее познанным её объектом. В мозгу человека содержится более 1011 нервных клеток: легко подсчитать во сколько раз эта цифра превышает численность примерно 6 миллиардов живущих на Земле людей. Нервные клетки взаимодействуют друг с другом с помощью специальных контактных зон – синапсов. В мозгу человека их приблизительно 1014, т.е. больше, чем звёзд в нашей Галактике. Так, например, рядовой мотонейрон спинного мозга образует около 10 000 синапсов с другими нервными клетками. Архитектура мозга тоже далеко не проста, но к настоящему времени сформировались такие принципы изучения его деятельности, которые позволяют преодолевать пессимизм, навеваемый представленными здесь астрономическими цифрами.Всю единую нервную систему принято подразделять на центральную нервную систему (ЦНС) и периферическую нервную систему (ПНС) – рис. 2.2. К ЦНС относят головной и спинной мозг, надёжно защищённые костями черепа, позвоночника и специальными мозговыми оболочками от возможных повреждений. К ПНС относятся периферические нервы и нервные сплетения или ганглии. ПНС разделяют на соматическую и вегетативную или автономную. В соматическую нервную систему включают приносящие информацию афферентные нейроны, тела которых находятся в спинальных ганглиях, а их отростки доставляют в ЦНС информацию от чувствительных окончаний в коже, мышцах и суставах. Кроме них к ПНС относят направляющиеся к мышцам отростки мотонейронов, тогда как тела этих клеток находятся в спинном мозгу и рассматриваются как часть ЦНС. Нейроны, уносящие информацию из ЦНС, называются эфферентными.Вегетативная нервная система иннервирует гладкие мышцы внутренних органов и кровеносных сосудов, сердце и железы внешней секреции. В ней принято выделять три подсистемы: симпатическую, парасимпатическую и энтеральную или метасимпатическую. Симпатическая нервная система используется для мобилизации энергии, обеспечивающей физическую активность во время реакций борьбы и бегства, она участвует в развитии стресса. Парасимпатическая нервная система регулирует восстановительные процессы и способствует запасанию энергии в организме. Энтеральная нервная система в основном контролирует моторную деятельность кишечника.ЦНС организована преимущественно симметрично относительно срединной плоскости: левая и правая её половины так же соответствуют друг другу, как левая и правая руки. Такую анатомическую организацию принято называть билатеральной. Для определения положения отдельных частей тела, конечностей, а также отдельных регионов мозга применяются специальные анатомические термины: краниальный – каудальный или краниальный – базальный (верхний – нижний), дорсальный – вентральный (к спине – к животу или же кзади – кпереди), медиальный – латеральный (ближе к середине – ближе к краю), проксимальный – дистальный (ближний – дальний) – рис. 2.3.Поведение определяется специфическими связями между различными классами нейронов с определёнными функциями. Такие связи устанавливаются в процессе развития мозга в соответствии с генетической программой. На ранней стадии онтогенеза – процесса индивидуального развития организма клетки эмбриона дифференцируются на три зародышевых листка: эктодерму (наружный слой), энтодерму (внутренний слой) и мезодерму, располагающуюся между энтодермой и эктодермой. Все клетки центральной нервной системы образуются из эктодермы (Рис. 2.4). Сначала из эктодермальных клеток возникает общая популяция предшественников нейронов и глии. Затем незрелые нервные клетки перемещаются к месту своего дальнейшего развития в соответствии с основным планом формирования центральной нервной системы. Тогда же их аксоны начинают расти в определённых направлениях, указанных химическими сигналами, и постепенно вступают в контакт с клетками-мишенями. Роль химических сигналов могут выполнять гормоны, а также особые ростковые факторы, выделяемые некоторыми категориями клеток.Перемещение незрелых клеток, рост их аксонов и выбор клеток-мишеней происходят не случайно, а в соответствии с генетической программой. Между аксонами и клетками-мишенями формируются синапсы, которые начинают действовать по мере созревания механизмов синтеза и выделения медиаторов, появления постсинаптических рецепторов, систем вторичных посредников. Следует отметить, что во время эмбрионального развития до половины предшественников погибают – это запрограммированная гибель, как запрограммирована и избыточная продукция клеток: таким путём происходит отбор наиболее эффективных вариантов развития. В итоге некоторая часть первоначально возникших синапсов в процессе развития исчезает, не выдержав конкуренции с действующими более эффективно (Рис. 2.5).Поведение формируется на основе взаимодействия генов и окружающей среды. Само поведение не наследуется, но наследуется ДНК – молекулярный носитель генов. Гены кодируют белки, необходимые для развития, сохранения и регуляции важнейших переключений между нейронами, от таких белков непосредственно и зависит поведение. Упорядоченные переключения между нейронами, возникшие во время развития мозга, гарантируют стабильность его деятельности и видовую специфичность. Внешним проявлением сформированных к моменту рождения связей между нейронами являются рефлексы, благодаря которым параметры внутренней среды уравновешиваются с постоянно меняющимися условиями окружения. Рефлексы осуществляются с помощью стабильных переключений между афферентными, вставочными и эфферентными нейронами, и потому раздражение определённых рецепторов обязательно приводит к стереотипному двигательному или секреторному ответу. Ещё до рождения, к концу внутриутробного периода формируются механизмы пищеварительных, защитных и ориентировочных рефлексов. Они сохраняются на протяжении всей жизни, несмотря на естественную гибель многих нейронов и регулярное обновление молекул в сохраняющихся клетках.Отдельные анатомические компоненты головного и спинного мозга показаны на рисунке 2.6.

2.3. Спинной мозг

Спинной мозг имеет сегментарное строение и расположен в позвоночном канале, занимая в нём пространство от основания черепа до первого – второго поясничных позвонков. Рострально (от лат. rostrum – клюв, т.е. на переднем конце) он соединяется со стволом головного мозга, а каудально (от лат. cauda – хвост) не достигает конца позвоночного канала, оканчиваясь на границе первого и второго поясничных позвонков т.н. конским хвостом, образованным корешками поясничных и крестцовых сегментов. Разная длина позвоночника и спинного мозга объясняется тем, что во время развития и роста позвоночник удлиняется больше, чем спинной мозг. Отсутствие спинного мозга каудальнее второго поясничного позвонка позволяет выполнять там диагностическое пунктирование, чтобы взять для исследования спинномозговую жидкость.Спинной мозг содержит 31 сегмент, от каждого сегмента в обе стороны идут спинномозговые нервы, образованные соединением задних чувствительных и передних двигательных корешков (Рис. 2.7).Спинномозговые нервы выходят из позвоночного канала через межпозвонковые отверстия, затем их двигательные волокна направляются к мышцам, а чувствительные – к своим окончаниям в коже, мышцах, суставах и внутренних органах. Связь каждого сегмента с областью иннервации осуществляется по жёсткой топографической схеме: двигательные волокна управляют строго определёнными мышцами, а чувствительные получают информацию от определённых регионов: например, в коже это ограниченные участки или дерматомы (Рис. 2.8).В спинном мозгу различают серое и белое вещество. В расположенном центрально сером веществе преобладают тела нервных клеток, тогда как белое вещество состоит преимущественно из множества отростков нейронов: по ним передаётся информация от одних сегментов спинного мозга к другим, от спинного мозга – к головному (восходящие пути) и наоборот, от головного мозга – к спинному (нисходящие пути).Спинной мозг – филогенетически самая старая структура мозга и большинство нейронных соединений в нём очень устойчивы, разные в функциональном отношении нейроны идеально подогнаны друг к другу. Это позволяет спинному мозгу самостоятельно регулировать простейшие двигательные и вегетативные реакции, такие, например, как отдёргивание руки от горячего предмета или опорожнение мочевого пузыря при значительном растяжении его стенок Но даже при выполнении таких стандартных реакций спинной мозг находится под постоянным контролем головного мозга. Ему спинной мозг поставляет сенсорную информацию, а от него получает большинство двигательных программ и указания по части вегетативной регуляции.

2.4. Ствол мозга

Ствол мозга включает в себя три анатомические структуры: продолговатый мозг, мост и средний мозг (Рис. 2.9).Рострально от спинного мозга находится продолговатый мозг, его прямым продолжением является мост, отграниченный резко очерченным выступом – он образован многочисленными волокнами, служащими для связи с мозжечком. Средний мозг расположен рострально от моста и включает в себя четверохолмие и ножки мозга, выходящие из моста и погружающиеся в большие полушария. В сером веществе ствола содержатся скопления нейронов, представляющих собой ядра двенадцати пар черепномозговых нервов, каждая из которых имеет свой порядковый номер (Таблица 2.1).Как видно из таблицы, большинство черепномозговых нервов содержат как афферентные (т.е. чувствительные или сенсорные), так и эфферентные (двигательные) волокна. Ядра III, YII, IX и X нервов включают также нейроны парасимпатического отдела вегетативной нервной системы.Двигательные и чувствительные нейроны ствола мозга представляют лишь незначительную часть его серого вещества. Большинство нейронов ствола специализируются на переработке информации, их скопления образуют многочисленные ядра, отростки которых могут направляться в спинной мозг, образуя нисходящие пути, либо связывать ствол с другими регионами головного мозга.Белое вещество ствола состоит из отростков нервных клеток, образующих проводящие пути, которые подразделяются на восходящие и нисходящие. Восходящие пути от нейронов спинного мозга несут в головной мозг сенсорную информацию о тактильной (чувство прикосновения), температурной и болевой чувствительности, о положении конечностей и туловища (проприоцептивное ощущение), о деятельности внутренних органов. Нисходящие пути служат для проведения сигналов от высших регионов мозга и ствола к нейронам спинного мозга; по ним передаётся информация, нужная для управления движениями и деятельностью внутренних органов. Кроме того, с помощью нисходящих путей некоторые регионы головного мозга контролируют передачу сенсорной информации.В медиальной части ствола на всём его протяжении содержится диффузная сеть нейронов, образующих т.н. ретикулярную формацию. Многочисленные ветвящиеся отростки её нейронов получают афферентную информацию от всех сенсорных систем, проводники которых проходят через ствол. Ретикулярная формация интегрирует сенсорные сигналы и, в соответствии с их характером, влияет на деятельность головного и спинного мозга. На головной мозг ретикулярная формация оказывает преимущественно активирующее влияние, её нисходящее влияние может быть как активирующим, так и тормозящим. Некоторые ядра ретикулярной формации выполняют узко специальные функции, такие, например, как регуляция артериального давления или контроль тонуса скелетных мышц, очень важную роль она играет в регуляции цикла сон-бодрствование и в формировании внимания.Относящееся к среднему мозгу четверохолмие состоит из верхнего и нижнего двухолмия – это, соответственно, первичные зрительные и слуховые центры. На уровне верхнего двухолмия находится красное ядро (Рис. 2.10) – важная часть системы, управляющей моторными нейронами спинного мозга. Ещё одно физиологически важное скопление нейронов среднего мозга – чёрная субстанция, функционально связанная с подкорковыми ядрами (базальными ганглиями), находящимися в больших полушариях мозга. Нейроны серого вещества, расположенного вокруг водопровода, играют важную роль в восприятии боли: их отростки спускаются в спинной мозг, чтобы контролировать там передачу информации, связанной с болевой чувствительностью.

2.5. Мозжечок

Расположен дорсально относительно моста и продолговатого мозга, непосредственно над ним находятся затылочные доли большого мозга. Мозжечок получает сенсорную информацию от всех систем, возбуждающихся во время движения, а также от других регионов мозга, которые участвуют в создании двигательных программ. Передача информации к мозжечку и от него осуществляется по многочисленным нервным волокнам, образующим ножки мозжечка: три пары таких ножек анатомически и функционально соединяют мозжечок со стволом мозга.Строение мозжечка довольно сложное: он имеет собственную кору, состоящую из огромного количества клеток нескольких разновидностей, а под корою, среди белого вещества проводящих волокон, располагаются несколько пар ядер мозжечка. Функция мозжечка состоит, в первую очередь, в формировании двигательных программ, необходимых для поддержания равновесия, регуляции силы и объёма движений: особенно важна роль мозжечка в регуляции быстрых движений.

2.6. Промежуточный мозг

Объединяет две соседние структуры мозга: зрительные бугры или таламус и гипоталамус (подбугорье). Зрительные бугры расположены по обе стороны третьего желудочка мозга и содержат большое количество переключательных ядер. Таламус является исключительно важным центром переработки почти всей сенсорной информации, это главная переключательная станция на пути передачи информации к коре мозга. Некоторые ядра таламуса получают сенсорную информацию с периферии, перерабатывают её и передают к определённым топографическим областям коры, которые специализируются на анализе только одного вида информации – зрительной, слуховой, соматосенсорной (воспринимающей сигналы от поверхности тела и от скелетных мышц). Таламические ядра такого типа называются специфическими или проекционными. Ядра другого типа, неспецифические, получают сигналы в основном от нейронов ретикулярной формации, такая информация не несёт сведений о специфических качествах действующих на организм раздражителей. Нейроны неспецифических ядер таламуса влияют на различные области коры. В свою очередь нейроны коры больших полушарий способны влиять на активность таламических нейронов, связи между таламусом и корой можно назвать двусторонними.Наряду с сенсорными в таламусе существуют и моторные ядра: с помощью нейронов этих ядер устанавливаются связи между моторной корой, мозжечком и подкорковыми ядрами – три эти структуры мозга формируют двигательные программы. Ещё одна группа ядер таламуса необходима для того, чтобы обеспечить взаимодействие различных регионов коры друг с другом и с подкорковыми структурами. Такие ядра можно назвать ассоциативными, они нередко связаны друг с другом с помощью отростков своих нейронов. Благодаря своим многочисленным связям с различными регионами мозга таламус вовлекается в осуществление многих функций: например, при его участии лимбическая система формирует эмоции, гипоталамус управляет работой внутренних органов, а различные области коры осуществляют деятельность, связанную с психическими процессами.Гипоталамус расположен в вентральной части промежуточного мозга непосредственно над гипофизом. Он является высшим центром регуляции вегетативных функций и координирует деятельность симпатического и парасимпатического отделов вегетативной нервной системы, согласует её с двигательной активностью. Он также управляет секрецией гормонов гипофиза, контролируя тем самым эндокринную регуляцию внутренних процессов. Некоторые из многочисленных ядер гипоталамуса регулируют водно-солевой баланс организма, температуру тела, чувство голода и насыщения, половое поведение. Гипоталамус является важнейшей мотивационной структурой мозга, в связи с этим он имеет прямое отношение к формированию эмоций и к организации целенаправленного поведения. Функции гипоталамуса обеспечиваются благодаря его двусторонним связям со многими регионами головного мозга и со спинным мозгом. Кроме того, многие нейроны гипоталамуса способны непосредственно реагировать на изменения внутренней среды организма.

2.7. Конечный мозг (полушария)

Симметрично расположенные полушария мозга соединяются друг с другом приблизительно 200 миллионами нервных волокон, образующих т.н. мозолистое тело. В каждом полушарии различают кору мозга и находящиеся в глубине полушарий подкорковые ядра: базальные ганглии, гиппокамп и миндалины мозга.Базальные ганглии – объединяют полосатое тело, состоящее из хвостатого ядра и скорлупы, и бледный шар. Они получают входную информацию от всех областей коры и от ствола мозга, а через ядра таламуса и от мозжечка, и используют её для формирования двигательных программ. Помимо этого базальные ганглии принимают участие в познавательной деятельности мозга.Гиппокамп и миндалины являются важными компонентами лимбической системы мозга, формирующей эмоции. Гиппокамп необходим для образования следов памяти, для трансформации кратковременной памяти в долговременную. Миндалины координируют вегетативные и эндокринные реакции, связанные с эмоциональными переживаниями. Наружная поверхность полушарий представлена корой – по количеству нервных клеток это самый большой регион мозга. Площадь этой поверхности, вписанной в ограниченное черепом пространство, увеличена за счёт многочисленных складок, выглядящих как извилины, разделённые бороздами. Толщина серого вещества мозговой коры варьирует между 1,5 – 5 мм, нейроны расположены в ней слоями. В большей части коры есть шесть слоёв, различающихся между собой по составу образующих каждый слой клеток.На поверхности каждого полушария принято различать четыре доли (Рис. 2.11). Кпереди от глубокой центральной борозды расположены лобные доли, позади неё – теменные. Латеральные или сильвиевы борозды отделяют от лобных и теменных долей височные доли, а затылочно-теменные борозды отделяют затылочные доли от теменных и височных. Различные области коры взаимодействуют друг с другом посредством прямых связей или с помощью ядер таламуса. Существует хорошо развитая сеть проводящих путей, которые позволяют коре больших полушарий получать сигналы от подкорковых структур и, в свою очередь, передавать им необходимую информацию.В зависимости от выполняемых функций различные области коры подразделяются на сенсорные, моторные и ассоциативные. К сенсорным областям относятся: соматосенсорная кора, занимающая задние центральные извилины, зрительная кора, находящаяся в затылочных долях и слуховая кора, занимающая часть височных долей. Моторная кора находится в передних центральных извилинах и в примыкающих к этим извилинам регионах лобных долей. Ассоциативная кора занимает всю остальную поверхность мозга и подразделяется на префронтальную кору лобных долей, теменно-височно-затылочную (парието-темпорально-окципитальную) и лимбическую, к которой относят внутренние и нижние поверхности лобных долей, внутренние поверхности затылочных долей и нижние отделы височных долей. Префронтальная кора создаёт планы комплекса моторных действий, теменно-височно-затылочная интегрирует всю сенсорную информацию, а лимбическая участвует в формировании памяти, эмоций и определяет мотивационные аспекты поведения.

2.8. Защита мозга, цереброспинальная жидкость или ликвор

Мозг защищён от возможных повреждений надёжней, чем любой другой орган: кроме костного футляра из черепа и позвоночника существуют ещё три защитных оболочки. Это, во-первых, твёрдая наружная оболочка, местами соединённая с внутренней надкостницей костей черепа. Под нею находится паутинная оболочка, а непосредственно к мозгу примыкает мягкая оболочка. Между паутинной и мягкой оболочками существует пространство, заполненное цереброспинальной или спинномозговой жидкостью (ещё одно название для неё – ликвор). Подпаутинное пространство посредством расположенных в области продолговатого мозга отверстий сообщается с внутренними желудочками мозга, тоже заполненными ликвором (Рис. 2.12). В больших полушариях находятся боковые желудочки, которые соединяются с третьим желудочком, а он сообщается с четвёртым желудочком посредством водопровода. В свою очередь четвёртый желудочек соединяется с центральным каналом спинного мозга.При таком распределении жидкости мозг оказывается взвешенным в ней и жидкость начинает играть роль гидравлического амортизатора, защищая нежную ткань от механических повреждений. Общее количество спинномозговой жидкости невелико – около 120-150 мл, из которых лишь 20-40 мл находятся в желудочках мозга. Ликвор содержит очень мало белка, а по солевому составу напоминает плазму крови. Мелкие кровеносные сосуды мозга постоянно выделяют небольшое количество такой жидкости, но примерно столько же её уходит в венозные синусы подпаутинного пространства: таким образом осуществляется непрерывная циркуляция ликвора. При некоторых заболеваниях эта циркуляция нарушается, что, в свою очередь, приводит к нарушениям деятельности ЦНС.

2.9. Кровоснабжение мозга и гематоэнцефалический барьер

Головной мозг снабжают кровью две сонные и две позвоночные артерии, которые, объединившись, образуют артериальный круг: ветви этого круга распределяются по всем регионам мозга. Нервные клетки способны работать только в условиях бесперебойной доставки кислорода и глюкозы, запасов которых у нейронов нет. Поэтому даже кратковременное прекращение притока крови к мозгу приводит к обмороку, при котором теряется сознание.От артериальных сосудов, расположенных на поверхности мозга, отходят мелкие сосуды, которые проникают в ткань мозга и разделяются там на капилляры. Именно они служат непосредственным источником кислорода, глюкозы и незаменимых аминокислот. В то же время, многие содержащиеся в крови вещества не должны проникать в мозг, преградой для них является гематоэнцефалический барьер. Он образован, во-первых, особым устройством капилляров, эндотелиальные клетки которых уложены наподобие черепицы на крыше, а потому межклеточных щелей между ними нет. Во-вторых, капилляры мозга имеют необычайно плотную базальную мембрану и, в-третьих, примерно 88% поверхности этой мембраны покрывают отростки астроцитов – одной из разновидностей клеток глии (См. главу 3).Гематоэнцефалический барьер препятствует диффузии всех крупных молекул, большинства продуктов патологических процессов и многих лекарств. В то же время потребление глюкозы и кислорода нейроны могут увеличивать по потребности – эти вещества проходят гематоэнцефалический барьер беспрепятственно.

2.10. Принципы организации функциональных систем мозга

Собрав и переработав всю сенсорную информацию, соответствующие области коры передают её ассоциативным полям, создающим замысел действий. В соответствии с этим замыслом моторные системы формируют команды для движений. Само решение о начале, как и об окончании действий, принимает мотивационная система, влияющая на выходную моторную активность, а через гипоталамус – и на состояние вегетативных функций. Несколько важных принципов определяют организацию этих функциональных систем.1. Все проводящие пути топографически упорядочены. В каждой из систем, будь то сенсорная, моторная или мотивационная, каждый нейрон играет роль, предусмотренную генетическим сценарием. Проводящие пути, посредством которых отдельные нейроны объединяются в системы, так чётко структурированы топографически, что позволяют создавать нейронные карты.Так, например, если на небольшом участке кожи от прикосновения возбудятся чувствительные окончания сенсорного нейрона, то этот нейрон передаст возбуждение через синапс следующему нейрону, который находится в продолговатом мозгу. Нейрон продолговатого мозга немедленно возбудит общающийся с ним нейрон таламуса, а тот передаст возбуждение в строго определённый участок задней центральной извилины. Если прикоснуться к соседнему участку кожи, то всё произойдёт в том же порядке, но участвовать в передаче информации будут другие нейроны, а поступит она в соседний участок коры.По этому же принципу разные участки моторной коры используют "собственные" нейроны-посредники головного и спинного мозга для передачи команд строго определённым мышцам, среди которых одни должны сократиться, а другие в это же время расслабиться, чтобы получилось нужное движение. Контакты между взаимодействующими нейронам устанавливаются в процессе развития мозга по определённому генетическому замыслу.Удивительная топографическая чёткость в организации сенсорных и моторных проводящих путей позволяет невропатологу точно определять область поражения мозга в зависимости от характера потерь в сенсорной и моторной деятельности.Не только моторные и сенсорные системы, но и все взаимодействующие друг с другом структуры мозга и все их проводящие пути строго упорядочены.2. В каждой сенсорной, моторной и мотивационной системе есть переключательные центры. Анатомически эти центры представлены переключательными ядрами – скоплениями тел нейронов, которые получают сигналы, перерабатывают их и распределяют по разным клеткам-мишеням. Переключательные ядра есть как в спинном, так и в головном мозгу, особенно много их в таламусе.В ядрах происходит не простое переключение сигнала с одного нейрона на другой, эти сигналы определённым образом изменяются, а стало быть переключательные ядра являются и важными центрами переработки информации. Разные переключательные ядра содержат разные типы нейронов, среди которых полезно различать две отличающиеся группы:а) Локальные интернейроны с относительно короткими отростками, которые не выходят за пределы самого переключательного ядра. Эти клетки участвуют в переработке сигналов посредством активации своих соседей или, наоборот, путём подавления их активности.б) Проекционные интернейроны с длинными отростками, по которым выходной сигнал из переключательных ядер доставляется к другим регионам мозга.3. В каждой системе используется несколько параллельных проводящих путей. В любой системе можно обнаружить ещё и подсистемы, каждая из которых решает собственную задачу. Так, например, в соматосенсорной системе разделены тактильное и болевое восприятие: для каждого вида чувствительности используются собственные проводящие пути.В моторной системе выделяется т.н. пирамидный путь, который начинается от пирамидных клеток моторной коры и оканчивается в спинном мозгу: он крайне важен для управления тонкими движениями пальцев и кистей рук. Но, в то же время, положение тела или двигательные рефлексы спинного мозга контролируют другие проводящие пути моторной системы. Раздельные пути могут использоваться одновременно и тогда все подсистемы действуют согласованно.4. Многие проводящие пути перекрещиваются. Большинство проводящих путей симметричны, но нередко они переходят на противоположную сторону. Так, например, пути передачи тактильного восприятия переходят слева направо и справа налево на уровне продолговатого мозга, а пути передачи болевой чувствительности перекрещиваются уже на уровне спинного мозга.Движения левой и правой руки или ноги контролируют противоположные полушария мозга, перекрёст двигательных путей происходит на уровне продолговатого мозга. Самым большим перекрёстом является мозолистое тело: около 200 миллионов нервных волокон переносят сигналы от одного полушария к другому.5. Разные области мозга специализируются на выполнении разных задач.В первой половине ХХ века господствовало представление об эквипотенциальности мозга, т.е. о функциональной равноценности его регионов (это положение относили в первую очередь к коре мозга). В настоящее время подавляющее большинство исследователей убеждено в локализации определённых функций в определённых регионах мозга, причём это представление относится и к коре больших полушарий.Так, например, любое ощущение возникает в результате переработки поступающей информации в строго определённых областях мозга: каждый вид информации перерабатывают специализированные рецепторы и переключательные центры, после чего она поступает к соответствующим областям представительства в коре: различным для тактильной, для зрительной, для слуховой чувствительности.По тому же принципу организованы нейронные карты моторной системы: разные движения программируются разными регионами коры. В то же время следует учитывать, что похожая информация переносится и перерабатывается несколькими нейронными группами и несколькими нейронными путями параллельно.6. Подобная информация перерабатывается параллельно. Принцип параллельной переработки информации означает, что любая важная сенсорная, моторная или другая интегративная функция всегда обеспечивается больше, чем одним нейронным путём. Наличие параллельно действующих путей позволяют компенсировать частичные повреждения какого-либо региона мозга, а со временем и сглаживать проявления нарушенной функции. Параллельная переработка информации отражает эволюционную стратегию надёжности, она существенно повышает функциональные возможности мозга.По мнению А. Н. Лурия в принятии любого решения должен участвовать весь мозг, однако разные его отделы выполняют различные функции, в связи с чем можно выделить три важнейших блока. Во-первых, энергетический блок или блок регуляции тонуса и бодрствования, к которому относится ретикулярная формация мозгового ствола и функционально связанные с нею ядра таламуса. Этот блок принимает сенсорную информацию и фильтрует её, пропуская к коре больших полушарий лишь наиболее значимые сигналы. Одновременно он регулирует активность нейронов коры, подготавливая их к получению информации.Во-вторых, это блок приёма, переработки и хранения информации, который представлен затылочными, височными и теменными областями коры. В него входят первичные и вторичные сенсорные зоны: зрительная, слуховая и соматосенсорная, а также ассоциативные регионы, в которых осуществляется интеграция всех видов сенсорной информации.И, наконец, третий блок, представленный лобными областями коры, в задачи которого входит программирование, регуляция и контроль поведения

2.11. Элементарные операции мозга – основа психических процессов

Ни у кого не вызывает возражений представление о том, что разные формы поведения, связанные, например, с едой или с ходьбой, основываются на определённой активности мозга. Но человеческое поведение всегда связано с познавательными процессами, такими, как мышление, речь, творческая работа, а они невозможны без нормальной активности мозга: свидетельством тому являются многочисленные нарушения этих процессов, встречающиеся при поражениях мозга или при психических болезнях. Активность мозга лежит в основе поведения вообще, а не только в основе простых действий типа еды или ходьбы.Ещё в XIX веке австрийский психиатр Карл Вернике (Wernicke K.) показал, что разные компоненты психических процессов относятся к разным регионам мозга, которые в определённой последовательности выполняют относительно простые операции, в результате которых формируется речь. Развитие этих идей в наше время привело к представлению о распределённой переработке информации.Суть этого представления состоит в том, что отдельные регионы мозга не являются местом комплексной мыслительной деятельности, но каждый регион (в первую очередь различные регионы коры мозга) выполняет элементарные операции. Каждая подобная операция является одним из компонентов мышления, отдельные компоненты объединяются множеством сложно организованных нейронных путей. Каждый такой путь продублирован параллельными путями, что обеспечивает сохранность функции при возникновении ошибок в отдельном месте.Все умственные процессы состоят из отдельных компонентов (можно, например, выделить восприятие, воспоминание, мышление, научение), но субъективно переживаются как целое. Эта целостность обеспечивается потому, что независимая и непрерывная переработка информации в нескольких регионах обязательно координируется межнейронными связями. Нелегко доказать: какие именно компоненты мыслительных процессов обеспечиваются определёнными нейронными путями или регионами мозга, но количество таких доказательств неуклонно возрастает.

Резюме

Содержащий огромное количество нейронов мозг человека анатомически и функционально очень чётко организован. Различные популяции нейронов, как и различные регионы мозга решают различные функциональные задачи. Межнейронные связи всегда топографически упорядочены и дублируются, что повышает их надёжность. Все функциональные системы мозга (сенсорные, моторные, мотивационные) постоянно взаимодействуют: на основе этой интеграции создаются самые разные формы поведения. Психические процессы тоже можно рассматривать как комплекс элементарных операций, выполняемых в разных регионах мозга, причём деятельность отдельных регионов постоянно координируется множеством межнейронных связей.

Вопросы для самоконтроля

16. В какой последовательности нервная система перерабатывает информацию?А. Изменение поведения ® сенсорная система ® мотивационная система ® моторная система ® изменение среды;Б. Сенсорная система ® мотивационная система ® изменение среды ® моторная система ® изменение поведения;В. Изменение среды ® сенсорная система ® мотивационная система ® моторная система ® изменение поведения;Г. Сенсорная система ® изменение среды ® мотивационная система ® моторная система ® изменение поведения;Д. Изменение среды ® мотивационная система ® моторная система ® сенсорная система ® изменение поведения.17. Какие нейроны называются афферентными?А. Периферические; Б. Соматические; В. Вегетативные; Г. Уносящие информацию из ЦНС; Д. Приносящие информацию в ЦНС.18. Каково смысловое значение термина "медиальный"?А. Верхний; Б. Ближний; В. Ближе к животу; Г. Ближе к спине; Д. Ближе к середине.19. Какой из указанных нервов является исключительно афферентным?А. Обонятельный; Б. Тройничный; В. Лицевой; Г. Языкоглоточный; Д. Блуждающий.20. При повреждении какого нерва может нарушиться процесс жевания?А. Блокового; Б. Тройничного; В. Лицевого; Г. Языкоглоточного; Д. Блуждающего.21. Какой из указанных нервов не содержит волокон парасимпатического отдела вегетативной нервной системы?А. Глазодвигательный; Б. Лицевой; В. Языкоглоточный; Г. Блуждающий; Д. Подъязычный.22. Назовите регион мозга, в котором находится чёрная субстанция:А. Спинной мозг; Б. Продолговатый мозг; В. Мост; Г. Средний мозг; Д. Мозжечок.23. Какая из перечисленных ниже структур играет особо важную роль в формировании внимания?А. Ретикулярная формация; Б. Чёрная субстанция; В. Примыкающее к водопроводу серое вещество; Г. Красное ядро; Д. Ядро тройничного нерва.24. Какие из перечисленных ниже ядер не могут находиться в таламусе?А. Специфические; Б. Моторные; В. Ассоциативные; Г. Подкорковые; Д. Неспецифические.25. Какая из указанных ниже структур принадлежит промежуточному мозгу?А. Мост; Б. Средний мозг; В. Таламус; Г. Базальные ганглии; Д. Мозжечок.26. Какая из указанных структур является важнейшей мотивационной областью мозга?А. Таламус; Б. Гипоталамус; В. Средний мозг; Г. Гиппокамп; Д. Базальные ганглии.27. Среди перечисленных ниже областей коры одна выделяется не по анатомическому, а по функциональному принципу; какая это область?А. Ассоциативная; Б. Затылочная; В. Височная; Г. Теменная; Д. Лобная.28. В чем состоит основная задача ассоциативных полей коры больших полушарий?А. Принимать сенсорную информацию; Б. Перерабатывать сенсорную информацию; В. Определять начало и конец действий; Г. Создавать замысел действий; Д. Создавать двигательные команды.29. Где существуют переключательные центры?А. Только в сенсорной системе; Б. Только в моторной системе; В. Только в моторной и сенсорной системах; Г. Только в мотивационной системе; Д. В сенсорной, моторной и мотивационной системах.30. Какую из указанных областей коры можно назвать лимбической?А. Префронтальная кора лобных долей; Б. Внутренние и нижние поверхности лобных долей; В. Теменно-височно-затылочная кора; Г. Передние центральные извилины; Д. Задние центральные извилины.









Нейроанатомия — это область науки, изучающая анатомическое строение и функциональную организацию нервных систем различных животных. На картинке показан разрез, на котором видна макроанатомия головного мозгачеловека.Нейроанатомия — это область биологическихнаук, изучающая анатомическое строение (структурная нейроанатомия) и функциональную организацию (функциональная нейроанатомия) нервных систем различных животных, обладающих ею. В отличие от животных, обладающих радиальной симметрией (например, медуз), у которых нервная система представляет собой диффузную нервную сеть, животные, обладающие билатеральной симметрией, имеют отдельные, чётко анатомически и гистологически отграниченные от других тканей, нервные системы. Поэтому их нервные системы вызывают больший интерес учёных и лучше изучены. У всех хордовых нервная система подразделяется на внутренние структуры головного мозга и спинного мозга, совместно называемые центральной нервной системой, или ЦНС, и на периферическую нервную систему, или ПНС, соединяющую при помощи нервов различные структуры центральной нервной системы с остальными частями тела, а также независимую энтеральную нервную систему, в дополнение к нервам периферической нервной системы иннервирующую желудочно-кишечный тракт. Гомологичные структуры у членистоногих и ряда других классов беспозвоночных животных называются, соответственно, окологлоточное нервное кольцо или центральный нервный узел (центральный ганглий), и центральная нервная ось (нейраксис), и периферическая нервная система.
Нейроанатомия является одновременно и подразделом нейронаук, и подразделом общей анатомии, и, таким образом, лежит на стыке их. Данная статья посвящена описанию изучения нейроанатомии, её методов исследования, истории её развития. Для информации об анатомическом строении и деталях функционирования нервных систем животных, обратитесь к статье нервная система. Для информации об анатомическом строении и деталях функционирования нервной системы именно человека, обратитесь к статьям головной мозг человека и периферическая нервная система.

Важность нейроанатомии как науки

Изучение того, как структурно и функционально организована та или иная часть нервной системы, из каких субъединиц (более мелких частей) или структурных блоков она состоит, и как эти субъединицы или структурные блоки соединены между собой, является критически важным для понимания того, как эта часть нервной системы вообще устроена и работает. Так, например, значительная часть информации о строении и функциях головного мозга, которой ныне обладают нейробиологи, была получена при помощи нанесения специфических, достаточно небольших по размерам, повреждений («лезий) или, наоборот, электростимуляции тех или иным областей или структур головного мозга, с последующим изучением того, как это влияет на поведение, память, эмоции и другие физиологические аспекты жизнедеятельности экспериментальных модельных животных.
Анатомияполушарий мозга, мозгового ствола и верхней части спинного мозга по Дж. М. Бурджери.Первые сохранившиеся в письменном виде исторические сведения о попытках изучения анатомии головного мозга человека обнаруживаются в древнеегипетских папирусах, в частности папирусе Эдвина Смита . Следующий большой шаг в развитии нейроанатомии был сделан древнегреческим врачом и философом Алкмеоном, который впервые установил тот факт, что именно головной мозг, а не сердце, как полагали до него, управляет всеми функциями тела и всей его жизнедеятельностью, и что работа органов чувств и сенсорных систем зависит от восприятия этой сенсорной информации головным мозгом .
После открытия Алкмеона свой вклад в дальнейшее развитие нейроанатомии внесли многие древнегреческие учёные, философы и врачи. В этом ряду стоит особо упомянуть вклад Галена, Герофила, Разеса и Эразистрата. Герофил и Эразистрат из Александрии были, по-видимому, наиболее влиятельными и авторитетными среди ранних древнегреческих нейроучёных, и подробно изучали строение головного мозга человека на многочисленных разрезах . В течение многих сотен лет после этого, в связи с категорическим запретом католической церкви на вскрытие тел умерших, в нейроанатомии не происходило никакого значимого прогресса. Однако папа Сикст IV способствовал возрождению изучения анатомии человеческого тела и в частности нейроанатомии, изменив папский эдикт по этому вопросу и разрешив с определёнными ограничениями вскрытие тел умерших людей. Это привело к взрывообразному росту количества исследований анатомии человека и в частности нейроанатомии человека как учёными, так и художниками эпохи Возрождения .
В 1664 году Томас Уиллис, врач и профессор Оксфордского университета, впервые употребил термин неврология в своей пионерской книге лат. Cerebri anatome. Выход в свет этой книги Уиллиса, как принято считать, знаменует начало систематического изучения нейроанатомии человека . В последующие чуть более чем 350 лет, от трудов Уиллиса до наших дней, нейроанатомия стала одним из наиболее бурно развивающихся подразделов анатомии. Это привело к публикации огромного количества книг, статей, медицинских документов, посвящённых тем или иным аспектам изучения нейроанатомии, строения и функционирования нервной системы и мозга.

Компоненты

На уровне ткани нервная система состоит из нейронов, глиальных клеток и внеклеточного матрикса. Как нейроны, так и глиальные клетки бывают множества различных типов. Нейроны являются клетками нервной системы, выполняющими основную её функцию — обработку входящей информации и выработку управляющих сигналов на её основе. В частности, они воспринимают сенсорную информацию из внешней среды (поступающую от органов чувств), а также интероцептивную и проприоцептивную информацию о внутреннем состонии организма, общаются друг с другом при помощи электрических сигналов и химических веществ, называемых нейромедиаторами, и как результат всей этой деятельности, формируют наши воспоминания, мысли, эмоции, движения, поведенческие акты и др. Глиальные клетки поддерживают гомеостаз в нервной системе, вырабатывают миелин для оболочек аксонов, и обеспечивают поддержку, питание и защиту нейронам. Некоторые типы глиальных клеток (астроциты) также способны генерировать волны градиента ионов кальция, распространяющиеся на большие расстояния, в ответ на электрическую или химическую стимуляцию, и выделять особые химические вещества, так называемые глиотрансмиттеры, в ответ на изменения концентрации ионов кальция во внеклеточном пространстве. Таким образом, некоторые типы глиальных клеток тоже участвуют в передаче информационных сигналов. Внеклеточный матрикс обеспечивает поддержку и питание клеток мозга на молекулярном уровне.
На уровне органов нервная система состоит из головного мозга (или окологлоточного нервного кольца, оно же «центральный нервный узел), спинного мозга (или центральной нервной оси, нейраксиса), периферических нервов и находящихся на концах периферических нервов чувствительных нервных окончаний (рецепторов или сенсоров) либо сопряжений с эффекторными органами, таких, как нервно-мышечный или нервно-железистый синапс. В свою очередь, головной мозг или окологлоточное нервное кольцо состоят из отдельных анатомических структур, таких, как таламус у хордовых или грибовидные тела у плодовой мушки дрозофилы . Спинной мозг или центральная нервная ось (нейраксис) также состоят из отдельных сегментов. Эти различные структуры и области головного мозга или окологлоточного нервного кольца, в свою очередь, имеют модульное строение, то есть состоят из более мелких субструктур, каждая из которых выполняет определённые физиологические функции, обеспечивая работу тех или иных нервных путей и трактов. Так, например, таламус критически важен для интеграции сенсорной информации, а гиппокамп — для формирования памяти.
Периферические нервы — это пучки нервных волокон, исходящие из головного и спинного мозга (или из окологлоточного нервного кольца и центральной нервной оси, соответственно), которые затем многократно ветвятся и иннервируют все части и органы тела, и оканчиваются либо чувствительными нервными окончаниями (для афферентных нервов), либо сопряжениями с клетками эффекторных (исполнительных) органов, например, нервно-мышечными или нервно-железистыми синапсами. Периферические нервы состоят в основном из аксонов отдельных нейронов, а также миелиновых оболочек и других мембран, которые покрывают их, разделяют между собой (электрически изолируют) и собирают в нервные волокна и пучки нервных волокон (тракты).
Нервная система всех хордовых животных подразделяется на центральную и периферическую нервную систему. Центральная нервная система состоит из головного мозга, черепных нервов, сетчатки и спинного мозга. Периферическая нервная система состоит из всех остальных нервов (то есть нервов, исходящих не из головного, а из спинного мозга), соединяющих центральную нервную систему со всеми остальными частями тела. Периферическая нервная система, в свою очередь, подразделяется на соматическую и автономную (или вегетативную) нервную систему. Соматическая нервная система состоит из афферентных нейронов, которые передают сенсорную информацию от чувствительных нервных окончаний (рецепторов или сенсоров) в органах чувств в ЦНС, и эфферентных нейронов, которые передают двигательную информацию к мышцам через нервно-мышечный синапс. Автономная, или вегетативная, нервная система, в свою очередь, имеет два подразделения или отдела: симпатическую нервную систему и парасимпатическую нервную систему. Эти два отдела вегетативной нервной системы находятся в постоянном динамическом равновесии или балансе, и являются во многих отношениях функциональными антагонистами друг друга. Их динамическое равновесие или баланс ответственны за регуляцию таких основных жизненных функций тела, как частота и сила сердечных сокращений, тонус кровеносных сосудов и других гладкомышечных органов, частота и глубина дыхания, секреция слюны и других пищеварительных соков, моторика желудочно-кишечного тракта, температура тела, секреция гормонов и др. Нервы вегетативной нервной системы, как и нервы соматической нервной системы, содержат афферентные и эфферентные волокна.

Ориентация и локализация структур в нейроанатомии

Мультипликация, составленная из нескольких сечений МРТ изображений головы пациента с доброкачественной семейной макроцефалией, сделанных в период до черепно-мозговой травмы.В анатомии в целом, и в нейроанатомии в частности, традиционно используется несколько взаимосвязанных наборов топографических терминов, описывающих взаимное пространственное расположение (локализацию) анатомических структур по отношению друг к другу и к осям тела, и их пространственные (топографические) взаимоотношения друг с другом и с осями тела (см. статью анатомическая терминология). В случае нейроанатомии речь идёт о взаимном пространственном расположении и пространственных взаимоотношениях частей нервной системы, в том числе головного и спинного мозга, периферических нервов, по отношению друг к другу и к осям тела или мозга. Однако в интерпретации этих традиционных анатомических терминов применительно к головному и спинному мозгу, особенно у прямоходящих животных (человека и высших приматов), а значит и применительно к сфере нейроанатомии в целом, есть свои особенности, порой приводящие к сложностям и неоднозначностям или неправильному пониманию, по сравнению с другими разделами анатомии. Причины этого будут изложены ниже.
Наиболее часто используемые в нейроанатомии пары топографических терминов включают в себя:
  • Дорсальный и вентральный. Термин «дорсальный» по отношению к структурам головного мозга означает «верхний», «расположенный сверху», а термин «вентральный» по отношению к структурам головного мозга означает «нижний», «расположенный снизу». Этимологически эти термины происходят, соответственно, от понятий лат. dorsum — спина и ventrum — живот, брюшная полость (у хордовых) или брюшко (у членистоногих). Таким образом, изначально эти термины означали, соответственно, «спинной» (то есть, обращённый в сторону спины, или находящийся ближе к спине), и «брюшной» (то есть, обращённый в сторону живота, брюшной полости или брюшка, или находящийся ближе к животу, брюшной полости или брюшку). Живот (брюшная полость) или брюшко у большинства видов животных обращён к земной поверхности, в то время как спина обращена кверху. Соответственно, «дорсальный» (спинной) для большинства видов животных во всех случаях является синонимом слова «верхний», «находящийся сверху», а «вентральный» (брюшной) — синонимом слова «нижний», «находящийся снизу». Однако прямоходячесть человека и, отчасти, прямоходячесть высших приматов запутывает ситуацию. Прямоходячесть человека и высших приматов приводит к тому, что вентральный (брюшной) аспект тела человека и высших приматов находится не снизу, а спереди. Дорсальный (спинной) аспект тела человека и высших приматов находится не сверху, а сзади. Именно в таком смысле должны трактоваться термины «дорсальные рога спинного мозга» (синоним «задних рогов спинного мозга») и «вентральные рога спинного мозга» (синоним «передних рогов спинного мозга»). Ситуация с трактовкой терминов «дорсальный» и «вентральный» применительно к голове и головному мозгу, особенно у человека и высших приматов — ещё более запутанна. Живот, брюшко или брюшная полость не переходят непосредственно в переднюю или нижнюю части головы, ни у прямоходячих (человека и высших приматов), ни у других видов животных. Спина или позвоночник также не переходит непосредственно в заднюю или верхнюю части головы, ни у прямоходячих (человека и высших приматов), ни у других видов животных. Соответственно, при буквальной трактовке, термины «дорсальный» («спинной») и «вентральный» («брюшной») получались бы не имеющими смысла применительно к голове и головному мозгу. Для придания терминам «дорсальный» и «вентральный», применительно к голове и головному мозгу, нового смысла, нейроанатомы договорились считать, что рот (ротовая полость) и лицевая часть черепа являются своего рода расширением или продолжением живота или брюшной полости, а задне-верхняя поверхность черепа — своего рода расширением или продолжением спины или позвоночника. Таким образом, те части головного мозга человека и высших приматов, которые расположены ниже, ближе к основанию черепа и к ротовой полости, принято называть вентральными, а те части головного мозга, которые расположены выше, ближе к «крыше» черепной коробки — принято называть дорсальными. Это полностью совпадает с интерпретацией терминов «дорсальный» и «вентральный» для всех частей тела, включая головной и спинной мозг, у других видов животных (где эти термины тоже обозначают «верх» и «низ», соответственно), но не совпадает с интерпретацией тех же самых терминов «дорсальный» и «вентральный» для спинного мозга человека и высших приматов (где эти же термины обозначают «задний» и «передний», соответственно, ввиду прямоходячести человека и высших приматов). Чтобы избежать подобного различия трактовок в зависимости от того, к чему относятся термины «дорсальный» и «вентральный» — к головному мозгу человека и высших приматов, или же к их спинному мозгу, — ряд учёных, пишущих статьи о нейроанатомии человека и высших приматов, предпочитают использовать для описания взаимного анатомического расположения структур головного мозга не термины «дорсальный» и «вентральный», а термины «краниальный» и «оральный», соответственно.
  • Ростральный и каудальный. Термин «ростральный» для почти всех видов животных относится к передней, или головной, носовой части тела или какой-либо его анатомической структуры, в то время как термин «каудальный» для почти всех видов животных относится к задней, или хвостовой, части тела или какой-либо его анатомической структуры. Этимологически эти термины происходят от rostrum — нос, и cauda — хвост. Однако у человека и высших приматов, в связи с их прямоходячестью и вертикальным положением тела (вертикальным положением оси «голова-хвост», или, в случае человека, у которого нет хвоста, оси «голова-копчик») термины «ростральный» и «каудальный» логически являются синонимами не терминов «передний» и «задний», а терминов «верхний» и «нижний», например, для спинного мозга. Применение этих терминов по отношению к головному мозгу осложняется ещё и тем, что все без исключения позвоночные в период эмбрионального развития образуют изгиб на 90 градусов нервной трубки, так называемую мезэнцефалическую флексуру. Этот изгиб продолжает, в видоизменённой форме, существовать и у взрослого человека или взрослого животного. Именно этот изгиб отделяет передний мозг от ствола мозга и спинного мозга. Благодаря существованию этого изгиба ростральная (верхняя) часть головного мозга эмбриона становится в итоге передней, носовой частью головного мозга взрослого человека или животного, а каудальная (нижняя) часть головного мозга эмбриона становится в итоге задней, «хвостовой» частью головного мозга взрослого человека или животного. Таким образом, получается, что пространственное значение терминов «ростральный» и «каудальный» отличается для головного и для спинного мозга. Оно также отличается для эмбрионов и для взрослых людей и животных, для прямоходячих (человек и высшие приматы) и не-прямоходячих животных. Чтобы избежать этих проблем, рекомендуется пользоваться терминами «верхний» и «нижний», «передний» и «задний» при описании относительного анатомического расположения структур головного и/или спинного мозга, а также положения плоскости рассечения.
  • Медиальный, медианный и латеральный. Термин «медиальный» (буквально «срединный») в анатомии означает, что анатомическая структура, о которой идёт речь, находится вблизи (или относительно ближе к) срединной линии или срединной плоскости сечения тела. В случае головного мозга этот термин означает близость к межполушарной срединной плоскости сечения мозга. Термин «медианный» или «центромедианный» означает, что анатомическая структура, о которой идёт речь, располагается точно по срединной линии или срединной плоскости. Напротив, термин «латеральный» (буквально «боковой») означает прямо противоположное — то, что анатомическая структура, о которой идёт речь, находится сбоку от срединной линии или срединной плоскости, на некотором удалении от неё. В отличие от пар терминов «дорсальный/вентральный» и «ростральный/каудальный», термины «медиальный/медианный/латеральный» не меняют своё значение в зависимости от прямоходячести или не-прямоходячести того или иного животного (то есть от естественного положения самой длинной из осей его тела, от положения спины/живота и головы/хвоста по отношению к Земле), или от того, идёт ли речь о головном мозге или о спинном, идёт ли речь о головном мозге взрослого человека или животного, или о головном мозге эмбриона на той стадии развития, в которой у него ещё нет мезэнцефалической флексуры. Поэтому употребление терминов «медиальный/медианный/латеральный», в отличие от вышеупомянутых пар терминов, не сопряжено с какими-либо проблемами или неоднозначностями трактовок.
Важно отметить, что все эти термины (дорсальный/вентральный; ростральный/каудальный; медиальный/медианный/латеральный) являются относительными, а не абсолютными. Так, например, некая латерально расположенная анатомическая структура может быть названа лежащей медиально по отношению к какой-либо структуре, расположенной ещё латеральнее (ещё дальше от срединной плоскости).